




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2023/11/251Chapter3.
CommitmentSchemes2023/11/252IntroductionThefunctionalityofacommitmentschemeiscommonlyintroducedbymeansofthefollowinganalogy.Supposeyouneedtocommittoacertainvalue,butyoudon’twanttorevealitrightaway.Forexample,thecommittedvalueisasealedbidinsomeauctionscheme.Onewaytodothisistowritethevalueonapieceofpaper,putitinabox,andlocktheboxwithapadlock.Thelockedboxisthengiventotheotherparty,butyoukeepthekey.Atalatertime,youpresentthekeytotheotherpartywhomaythenopenthebox,andcheckitscontents.2023/11/253CoinFlippingovertheTelephoneAnimmediateapplicationofcommitmentschemesisknownas“coinflippingoverthetelephone”oras“coinflippingintoawell”.Twoparties,sayAandB,determineamutuallyrandombitasfollows.PartyAcommitstoarandombitvaluebA
R{0,1}bysendingacommitmentonbAtopartyB.PartyBthenrepliesbysendingabitvaluebB
R{0,1}toA.Finally,partyAopensthecommitmentandsendsbAtoB.Bothpartiestakeb=bA
bBasthecommonrandombit.Ifatleastoneofthepartiesishonest,theresultingbitbisdistributeduniformlyatrandom,assumingthatAandBcannotcheatwhenrevealingtheirbits.2023/11/254ApplicationofCommitmentNotethatpartyBseesthecommitmentofAbeforechoosingitsbitbB,sonoinformationonbitbAshouldleakfromthecommitmentonbA.Similarly,partyAcouldtrytoinfluencethevalueoftheresultingbitb(afterseeingthebitbB)byopeningthecommitmentonbAasacommitmenton1-bA.Clearly,partyAshouldnotbeableto“changeitsmind”insuchaway!Generatingmutuallyrandombitsisabasicpartofmanyprotocols.Commitmentsareusedasanauxiliarytoolinmanycryptographicapplications,suchaszero-knowledgeproofsandsecuremulti-partycomputation.2023/11/255CommitmentSchemeAcommitmentschemeconsistsoftwoprotocols,calledcommit
andreveal,betweentwoparties,usuallycalledthesenderandthereceiver.Inmanycases,theprotocolscommitandrevealcanbedefinedintermsofasinglealgorithm,requiringnointeractionbetweenthesenderandreceiveratall.Suchcommitmentschemesarenon-interactive.2023/11/256
ReceiverCommitPhaseRevealPhaseSenderReceiverXCommitmentProtocol
Receivercanverify
X
wasthevalueintheboxSenderisboundtoXXSender2023/11/257BitCommitment:LockingaBitinaSecureBoxf:{0,1}XYisbitcommitmentschemeifforarandomlychosenxfromXConcealing:forabitb
{0,1},Verifier(Receiver)cannotdeterminethevaluebfromf(b,x),theblobBinding:Prover(Sender)canlateropentheblobbyrevealingthevalueofx.TheProvershouldnotbeabletoopentheblobasboth0or12023/11/258FollowingCommitPhaseReceivershouldnothavegainedanyinformationaboutXInformationtheoretic?Computationally?SendershouldbeboundtoXNotwodifferentandvalidopeningsexistItiscomputationallyinfeasibletofindtwodifferentvalidopenings2023/11/259BitCommitmentbyEncryption(Example1)LetK=(n=pq,e,d)beanRSAkeyTocommitabitb,wecoulddothefollowingChoosearandomxsuchthatxisevenifb=0xisoddifb=1Letblob(b)=xemodnToopenblob(b),justreviewx,usetheencryptiontocheck!Concealing:b不参与其中运算Binding:不存在x1(odd),x2(even),x1e=x2emodn2023/11/2510BitCommitmentbyEncryption(Example2)LetK=(n=pq,p,qprimes,),(n,m)publishedTocommitabitb,wecoulddothefollowingChoosearandomxsuchthatY=f(b,x)=mbx2modnToopenblob(b),justreviewbandx,usetheencryptiontoverify:y=f(b,x)=mbx2modnConcealing:如果平方剩余问题不可解,noinformationonbwillberevealedBinding:ifnot,thenexistx1,x2,commit(x1,,1)=commit(x2,,0),mx12=x22modn,thenm=(x2x1-1)2(modn),itiscontradictiontothecondition.2023/11/2511DefinitionLetcommit:{0,1}k×{0,1}*
{0,1}*beadeterministicpolynomialtimealgorithm,wherekisasecurityparameter.A(noninteractive)commitmentschemeconsistsoftwoprotocolsbetweenasenderandareceiver:Commitprotocol:Tocommittoavaluex
{0,1}*,thesendercomputesC=commit(r,x),wherer
R{0,1}k,andsendsCtothereceiver.Revealprotocol:ToopencommitmentC=commit(r,x),thesendersendsrandxtothereceiver.Thereceivercomputescommit(r,x)andverifiesthatitisequaltothepreviouslyreceivedcommitment.Inthespecialcasethatthecommittedvalueisabit,thatis,x
{0,1},onespeaksofabitcommitmentscheme.2023/11/2512SecurityRequirementsThesecurityrequirementsforabitcommitmentschemearethefollowing.Thecommitmentmustbebinding,i.e.,foranyadversaryA,theprobabilityofgeneratingr,r’
{0,1}ksatisfyingcommit(r,0)=commit(r’,1)shouldbenegligible(asafunctionofk).Furthermore,thecommitmentmustbehiding,i.e.,thedistributionsinducedbycommit(r,0)andcommit(r,1)(withr
R{0,1}k)areindistinguishable.2023/11/2513SomedistinctionsAcommitmentschemeiscalledcomputationallybinding
iftheadversaryAisrestrictedtobeap.p.t.algorithm.theschemeiscalledinformationtheoreticallybinding
ifnosuchrestrictionismade(inotherwords,theadversarymaybeunlimitedpowerful).Similarly,theschemeiscalledcomputationallyhiding
ifthedistributionsinducedbycommit(r,0)andcommit(r,1)arepolynomiallyindistinguishableandtheschemeiscalledinformation-theoreticallyhiding
ifthesedistributionsarestatisticallyindistinguishable.2023/11/2514SecurityPropertiesThesecuritypropertiesareeasilyextendedtothecasethatxisanarbitrarystring.Notethattheabovesecurityrequirementsonlycoverattacksbyeitherthesenderorthereceiver.Forexample,supposepartyAactsasthesenderandpartyBactsasthereceiver,andAsendsacommitmentCtoB.ThenthereisnoguaranteethatBwillnoticeifanattackerreplacesCbyacommitmentC’=commit(r’,x’)duringthecommitprotocol,andreplacesr,xbyr’,x’duringtherevealprotocol.SuchattacksmaybestoppedbyusinganauthenticatedchannelbetweenAandB.2023/11/2515CommitmentUsingaHashFunctionGivenacryptographichashfunctionHoneobtainsabitcommitmentschemesimplybysettingcommit0(r,b)=H(r,b),whereb
{0,1}andr
R{0,1}k.ThepreimageresistanceofHguaranteesthatthevalueofbremainshidden(aswellasthevalueofr).Theschemeisthereforehiding.Collision-resistanceofHguaranteesthatthecommittercannotpreparer,bandr’,1-bwithH(r,b)=H(r’,1-b).Hence,theschemeisbindingaswell.Moreprecisely,weconcludethattheschemeiscomputationallybindingandcomputationallyhiding.Canwedobetter?2023/11/2516BitCommitment-Suggestion1AliceBob1SHA-101001CommitmentAliceBob1Unveiling2023/11/2517BitCommitment-Suggestion2AliceBob1101110100SHA-101001CommitmentAliceBob1101110100Unveiling2023/11/2518BitCommitment-AssumptionsHashisonewayandcollision-freeAliceiscomputationallyboundedHashdoesn’t“leak”informationExampleofa“leaky”hash:1101110100SHA-1100112023/11/2519CommitmentUsingaDiscreteLogSettingLetG=<g>beagroupofordern,wherenisalargeprime.Leth
RG\{1}denotearandomgroupelement(suchthatlogghisnotknowntoanyparty).Wedefinethefollowingbitcommitmentscheme(knownas“Pedersen’scommitmentscheme”):commit1(r,b)=grhb,wherer
RZn.Thisschemeiscomputationallybinding(undertheDLassumption),whichcanbeseenasfollows.Supposeitiscomputationallyfeasibletocomputer,r’
Znsuchthatcommit1(r,b)=commit1(r’,1-b).Thatmeansthatgrhb=gr’h1-b,hencethatloggh=(r-r’)/(1-2b).Sincer,r’,andbareallknown,thismeansthatthediscretelogofhwithrespecttogwouldbecomputed.2023/11/2520CommitmentUsingaDiscreteLog(cont.)Ontheotherhand,theschemeisinformation-theoreticallyhiding,sincethedistributionofgrhbisstatisticallyindependentofthevalueofb.(相当于gr和gr’的分布是统计不可区分的)
r=r’概率为0,因为h不为1,所以x不为0Asacomplementarybitcommitmentscheme,onemayusethefollowingElGamal-likescheme:commit2(r,b)=(gr,hr+b),wherer
RZn.Thisschemeisinformation-theoreticallybinding,sinceitiseasilyseentherecannotevenexistr,r’
Znsuchthatcommit2(r,b)=commit2(r’,1-b),forb
{0,1}.即不能既作为0又作为1来打开承诺2023/11/2521CommitmentUsingaDiscreteLog(cont.)Ontheotherhand,thisschemeiscomputationallyhiding,sincebcanbecomputedasfollows.AssumingthattheDLproblemisfeasible,onemaycomputebfromagivencommitmentcommit2(r,b)=(x,y),usingtheformulab=loghy-loggx.Note,however,thattheDLassumptionisnotsufficienttoguaranteethattheschemeishiding.WeneedtousetheDDHassumptiontoensurethehidingproperty,assolvingforbgivencommit2(r,b)isequivalenttosolvingtheDDHproblem.Bothcommitmentschemesremainsecurewhenusedforb
Zninsteadofb
{0,1}
Zn.2023/11/2522ExampleExample:Analyzethesecuritypropertiesofcommit1andcommit2forthecasethatb
Zn.Solution:Thesamereasoningappliesasbefore,exceptthatforshowingthatcommit1iscomputationallybindingweneedamoregeneralargument.Supposethatitisfeasibletofindr,r’,b,b’withb
b’suchthatcommit1(r,b)=commit1(r’,b’).Thismeansthatgrhb=gr’hb’,hencethatloggh=(r–r’)/(b’-b).Sincer,r’,b,b’areallknown,thismeansthatthediscretelogofhwithrespecttogcanbecomputed,contradictingtheDLassumption.2023/11/2523ExampleExample:Whathappensifthereceiverknowslogghinschemecommit1?Samequestionforschemecommit2.Solution:Sinceschemecommit1isinformation-theoreticallyhiding,thevalueofthecommittedvaluebishiddenevenifthereceiverknowsloggh.Forschemecommit2,thereceiverisabletocomputethevalueofhb=y/xloggh,where(x=gr,y=hr+b)=commit2(r,b).Ifb
{0,1},thenhb
{1,h}andthevalueofbiseasilydetermined.Ifb
Znandnoadditionalinformationonbisknown,thencomputingbfromhbwillbeinfeasible(undertheDLassumption).2023/11/2524ExampleExample:Discussthesecurityofthefollowingcommitmentschemeforvaluesm
<g>:commit(r,m)=grm,wherer
RZn.Isitbinding?Isithiding?Solution:Theschemeisnotusefulasitisnotbinding.Letm’=mgr’,thencommit(r,m)=grm=gr-r’m’=commit(r–r’,m’).So,commitmentcommit(r,m)canbeopenedasacommitmenttoanymessagem’withm’=mgr’.Theschemeisinformation-theoreticallyhiding.Again:相当于gr和gr’的分布是统计不可区分的2023/11/2525ImpossibilityResultAnaturalquestioniswhetherthereexistsacommitmentschemewhichisbothinformation-theoreticallybindingandinformation-theoreticallyhiding.Thefollowinginformalargumentshowsthatsuchaschemecannotexist.Consideranybitcommitmentschemewhichisinformation-theoreticallybinding.Forsuchaschemetherecannotexistanyr,r’suchthatcommit(r,0)=commit(r’,1),becausethenthe(unlimitedpowerful)senderwouldbeabletocomputebothrandr’,andopenthecommitmentatitsliking.However,ifthesendercommitsto0,say,usingC=commit(r,0)forsomer,the(unlimitedpowerful)receiverwillnoticethattheredoesnotexistanyr’withC=commit(r’,1),hencethereceiverknowsthatthecommittedvaluemustbe0.2023/11/2526HomomorphicCommitmentsThebasicsecurityrequirementforacommitmentschemearethatismustbebindingandhiding.Anotherusefulpropertyofacommitmentschemeisthatitmaybehomomorphic.Wewillintroducethehomomorphicpropertybymeansofanexample.ConsiderPedersen’scommitmentscheme,givenbycommit1(r,x)=grhx,wherer
RZnandx
Zn.Thisschemeishomomorphicinthesensethat:commit1(r,x)commit1(r’,x’)=commit1(r+r’,x+x’),wherethemultiplicationontheleft-handsideisinthegroupGandtheadditionsontheright-handsideareinZn.So,theproductoftwocommitmentsisacommitmenttothesumofthecommittedvalues.Homomorphicpropertiesturnouttobeveryusefulforachievingsecuremultipartycomputation.2023/11/2527HomomorphicPropertyAsaconcreteexample,homomorphiccommitmentscanbeusedasabuildingblockforsecureelectionschemes:veryroughly,duringthevotingstage,votersputtheirvotesintohomomorphiccommitments,andduringthetallyingstage,thevotesarecountedbytakingtheproductofallcommitments).2023/11/2528ExampleLetm=pq.TheQuadraticResiduosity(QR)assumptionstatesthattheQRproblemisinfeasible.Example:Lety
Jmdenoteanon-quadraticresiduemodulom(e.g.,y=-1isanon-quadraticresiduemodulomwhenmisaBluminteger“p=q=3mod4”).Considerthefollowingbitcommitmentscheme:commit(r,b)=ybr2modm,wherer
RZm.Inwhatsenseistheschemebinding?Inwhatsenseistheschemehiding?Inwhatsenseistheschemehomomorphic?2023/11/2529CommitmentusingQuadraticResiduositySolution:Notethatb=0ifandonlyifcommit(r,b)isaquadraticresiduemodulom.Therefore,theschemeisinformation-theoreticallybindingandcomputationallyhiding(why??Animportantexercise).Thehomomorphicpropertyforthisschemeisgivenbycommit(r,b)commit(r’,b’)=commit(rr’,b
b’),hencetheproductoftwocommitmentsisacommitmenttotheXORofthecommittedvalues.Computationallyhiding:如果平方剩余问题可解,那么如果commnit(r,b)为平方剩余则b=0,否则b=1.Information-theoreticallybinding:ifthereexistsr1,r2,commit(r1,,1)=commit(r2,0),thenyr12=r22modn,theny=(r2r1-1)2(modn),itiscontradictiontothecondition.2023/11/2530ApplicationsCoinFlippingAuctionsZeroKnowledge2023/11/2531CoinFlippingbyTelephoneAliceandBobwanttomakesomedecisionbasedonarandomcoin--ifthecoinis“head”Alicegetstherightandifthecoinis“tail”,BobgetstherightAliceisinBeijingBobisinShanghai2023/11/2532UsingCommitmentProtocolAlicechoosearandombitbAlicesendtoBobhercommitmentblobBobguessthevalueofthebitAliceopentheBlobHeadifBobiswrongandtailifBobisright2023/11/2533CoinFlippingProtocol
AselectsrA
R0,1;Commitsto
rA
BsendsbitrB
R0,1CoinisrA
rBIfAdoesn’topen-resultis
IfA’sopeningisinvalid-resultis
2023/11/2534InteractiveProofSystemLetL
{0,1}*bealanguageOneparty,theProverP,wanttoconvincetheotherparty,VerifierVthat
X
LInourcase:bothpartiesarePPTM;exchangemessagesandflipcoinsProverPmayhavesomeextrainformationWAttheendoftheprotocolVerifierVstate
{accept,reject}ForagivenWtheinteractionbetweenVandPinducesadistributionofthetranscriptsProverPVerifierV
2023/11/2535WitnessProtectionProgramsAwitnessindistinguishableproofsystemforX
L
Proverp
VerifierVCompleteness:ifproverPhaswitnessW-canconstructeffectiveproofthatmakesverifierVaccept.Soundness:ifX
L
no
proverP*
cansucceedwithhighprobabilitytomakeverifier
Vaccept.WitnessIndistinguishability:foreveryV*andanywitnessesW1
and
W2:distributionsontranscriptsarecomputationallyindistinguishable.Nopolynomialtimetestcandistinguishthetwo2023/11/2536Example:HamiltonicityCommoninputgraphG=(V,E)ListhelanguageofgraphswithHamiltoniancyclesG=(V,E)
L
ifandonlyifthereisacycleC=(i1,i2,
in)coveringallnodesofVonceand(ij,ij+1)
E2023/11/2537Example:HamiltonicityCommoninputgraphG=(V,E)ListhelanguageofgraphswithHamiltoniancyclesWitness
W–aHamiltonianCycleC=(i1,i2,
in)Protocol:ProverP
selectsarandompermutation
ofthenodesCommitstotheadjacencymatrixof
(G)=(
(V),
(E))foreachentryseparatelyVerifier
V
selectsandsendsabitr
R0,1Ifr=0P
opensallthecommitmentsandsends
Ifr=1P
opensonlythecommitmentscorrespondingtoCentries(
(ij),
(ij+1))Verifier
V
acceptsif:r=0andcommittedgraphisomorphictoG
r=1anda
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 后厨安全生产培训
- 2025年洋葱订购合同范本
- 特种设备知识
- 2025房屋买卖合同 标准版模板全
- 提升工作满意度的年度措施计划
- 幼儿园学期内教研计划书
- 创建以人为本的管理模式计划
- 货品追踪系统的实施策略计划
- 先天性动脉导管未闭的健康宣教
- 2025房地产代理公司与客户合同范本
- 自动转运小车结构及控制系统设计说明书
- 《医学心理学》课件:第11章 医患关系
- 饮水设备巡查维护记录表
- 洛阳十三朝古都课件
- RomaxDesigner 培训教程(合)教学提纲
- 《中国传统服饰——汉服》PPT课件
- 顾洁Storytime
- 小学信息技术认识《画图》
- 【精品】宇通客车涂装车间实习报告
- 冷冻机的制冷效率与运行电费
- 物业服务流程图
评论
0/150
提交评论