下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
实用文档(一).关于原函数与不定积分概念的几点说明
1.
原函数与不定积分是两个不同的概念,它们之间有着密切的联系。对于定义在某个区间上的函数f(x),若存在函数F(x),使得该区间上的每一点x处都有F/(x)=f(x),则称F(x)是f(x)在该区间上的原函数。而表达式F(x)+C(C为任意常数)称为f(x)的不定积分。2.f(x)的原来函数若存在,则原函数有无限多,但任意两个原函数之间相差某个常数。因此求f(x)的不定积分∫f(x)dx时,只需求出f(x)的一个原函数F(x),再加上一个任意常数C即可,即∫f(x)dx
=F(x)+C。3.
原函数F(x)与不定积分∫f(x)dx是个体与全体的关系,F(x)只是f(x)的某个原函数,而∫f(x)dx是f(x)的全部原函数,因此一个原函数只是加上任意常数C后,即F(x)+C才能成为f(x)的不定积分。例如x2
+1,x2-3,x2+12都是2x的原函数,但都不是2x的不定积分,只有x2
+C才是2x的不定积分(其中C是任意常数)。4.f(x)的不定积分∫f(x)dx中隐含着积分常C,因此计算过程中当不定积分号消失后一定要加上一个任意的常数C。5.
原函数存在的条件:如果函数f(x)在某区间上连续,则在此区间上f(x)的原函数一定存在。由于初等函数在其定义域区间上都是连续的,所以初等函数在其定义区间上都有原函数,值得注意的是,有些初等函数的原函数很难求出来,甚至不能表为初等函数,例如下列不定积分
∫
dx
∫
都不能“积”出来,但它们的原函数还是存在的。
(二)换元积分法的几点说明
换元积分法是把原来的被积表达式做适当的换元,使之化为适合基本积分公式表中的某一形式,再求不定积分的方法。1.
第一换元积分法(凑微分法):根据一阶微分形式的不变性,若
dF(u)=f(u)du
则
dF(u(x))=f(u)du利用不定积分与微分的互逆关系,可以把它转化为不定积分的换元公式:∫f[u(x)]du(x)=
∫f(u)du
(令u=u(x))
=F(u)+C
(求积分)
=F(u(x))+C
(令
u=u(x))
在具体问题中,凑微分要根据被积函数的形式特点灵活运用。
2.
第二换元积分法:令x=φ(x),常用于被积函数含
或
等形式。3.
同一个不定积分,往往可用多种换元方法求解,这时所得结果在形式可能不一致,但实质上仅相差一常数,这可通过对积分结果进行导运算来验证。
(三)关于积分形式不变性如果∫f(x)dx=F(x)+C,那么有∫f(u)du=F(u)+C,其中u=Φ(x)是x的可微函数。这个道理说明:(1).积分变量x无论是自变量,还是中间变量,积分公式的形式不变,这一特性叫做积分形式不变性。
(2).根据这个定理,基本积分公式中的x既可以看作是自变量,也可以看作是函数(可微函数),因此基本积分公式中的公式应用范围就扩大了。
(四)分部积分法设u=u(x),v=v(x)是可微函数,且u/(x)v(x)或u(x)v/(x)有原函数,则有分部积分公式:∫u(x)v/(x)dx=u(x)v(x)-∫v(x)u/(x)dx或
∫udu
=
uv
-
∫vdu当被积分函数是两个函数的乘机形式时,如果用以前的方法都不易计算,则可考虑用分部积分法求解。显然,用分部积分法计算不定积分时,关键是如何恰当的选择谁做u,谁做v/。如果选择不当,就有可能求不出积分的结果或者计算很困难,一般说来选择u和v/的原则是:1.
根据v/容易求出v;
2.
∫vu/dx要比∫uv/dx容易计算。
(五)关于定积分的定义
由定积分的定义可以看出,定积分是一个数值,这个数值与被积函数f(x)及积分区间[a,b]有关,与区间[a,b]的分法和点的取法无关,而且与积分变量用什么字母也无关,所以有
f(x)dx=
f(t)dt
=
f(u)du函数f(x)在[a,b]上可积的条件与f(x)在[a,b]上连续或可导的条件相比是最弱的条件,即f(x)在[a,b]上有以下关系:
可导
连续
可积反之都不一定成立。
(六)有关定积分的性质
在定积分的性质中,除了类似于不定积分的线性性质以外,还要记住下列基本公式:
f(x)dx
=-
f(x)dx
f(x)dx=0
1dx=b-a
定积分关于积分的区间的
可加性是一个很重要并且在计算定积分时常用的性质,即,
f(x)dx
+
f(x)dx
=
f(x)dx
(七)关于牛顿-
莱布尼茨公式
牛顿-莱布尼茨公式不仅在定积分这部分内容中,而且在整个微积分学中都是一个重要的结论,主要表现在以下方面:1.
当被积函数连续时定积分的计算可通过求原函数来进行:若F(x)是f(x)的一个原函数,则
f(x)dx
=F(b)-F(
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 二零二五版劳动者劳动社会保险合同(特殊工种)3篇
- 二零二五版水沟施工与承包劳务合同范本2篇
- 二零二五版家政服务公司家政服务与品牌建设合同3篇
- 二零二五版宅基地使用权转让与房屋租赁一揽子合同2篇
- 二零二五版远程办公劳动合同签订与工作质量监控3篇
- 二零二五版办公用品耗材行业联盟采购合同2篇
- 二零二五版旅游租车服务合同范本2篇
- 2025年草原草原生态保护与资源合理利用合同3篇
- 二零二五版家具原料采购合同与供应链管理协议3篇
- 展会市场调研服务合同(2篇)
- 非ST段抬高型急性冠脉综合征诊断和治疗指南(2024)解读
- 产品共同研发合作协议范本5篇
- 风水学的基础知识培训
- 2024年6月高考地理真题完全解读(安徽省)
- 吸入疗法在呼吸康复应用中的中国专家共识2022版
- 1-35kV电缆技术参数表
- 信息科技课程标准测(2022版)考试题库及答案
- 施工组织设计方案针对性、完整性
- 2002版干部履历表(贵州省)
- DL∕T 1909-2018 -48V电力通信直流电源系统技术规范
- 2024年服装制版师(高级)职业鉴定考试复习题库(含答案)
评论
0/150
提交评论