版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
高级中学名校试卷PAGEPAGE1河北省秦皇岛市部分学校2024届高三上学期开学检测数学试题一、单项选择题1.已知集合,,则等于()A. B. C. D.〖答案〗C〖解析〗由得或,则或,因此;又,则.故选:C.2.已知,则的虚部为()A. B.4 C. D.〖答案〗A〖解析〗因为,所以,所以,所以的虚部为.故选:A.3.正边长为,、为线段的三等分点,则()A. B. C. D.〖答案〗C〖解析〗因为是边长为的等边三角形,(法一)由题意,,,由平面向量数量积的定义可得,所以,;(法二)以所在直线为轴,以垂直平分线为轴建立如图所示的平面直角坐标系,则、、,则,,所以,;故选:C.4.从点射出的光线经轴反射后,与圆有公共点,则反射光线所在直线斜率的最小值为()A.1 B. C. D.〖答案〗A〖解析〗根据光学性质可得,反射光线一定经过关于轴的对称点,反射光所在直线斜率不存在时,反射光的直线方程为,由,易得该方程组无解,于是反射光所在直线斜率存在,设经过的直线为,若反射光和圆有公共点,则圆心到直线的距离不超过半径,根据点到直线的距离公式,,整理得,即,解得,故斜率最小值是.故选:A5.中国传统木构建筑的窗棂是框架结构设计,它是传统建筑中最重要的构成要素之一,也是建筑的审美中心.如图中矩形是某窗棂的一部分,图中与矩形边平行的横线与竖线构成矩形()个A24 B.27 C.36 D.60〖答案〗C〖解析〗在矩形中的条横线任选条,有种方法,条竖线任选条,有种方法,这时一定会围成一个封闭图形,即为所求矩形,共有种方法.故选:C6.正数满足,则的最大值为()A.1 B.2 C.3 D.4〖答案〗B〖解析〗因为正数满足,所以,当且仅当时,等号成立,得.则,当且仅当时取等号,所以的最大值为2,故选:B7.已知是椭圆的两个焦点,点在上,若的离心率,则使为直角三角形的点有()个A.2 B.4 C.6 D.8〖答案〗D〖解析〗由可得,即,可得,因此以为直径作圆与必有四个不同的交点,因此中以的三角形有四个,除此之外以为直角,为直角的各有两个,所以存在使为直角三角形的点共有8个.故选:D8.已知函数在上有两个不等根,则的值为()A. B. C. D.〖答案〗D〖解析〗,在有两根,则时,,,不妨设,则,.故选:D二、选择题9.已知数列满足且的前项和为,则()A.是等差数列 B.为周期数列C.成等差数列 D.成等比数列〖答案〗AB〖解析〗由且则且,故,所以在上成立,A对;综上,为奇数时,为偶数时,B对;为奇数,为偶数,不成等差数列,C错;不成等比数列,D错.故选:AB10.如图为一正方体的展开图、则在原正方体中()A. B.C.直线与所成的角为 D.直线与所成的角为〖答案〗BCD〖解析〗画出原正方体如下图所示,由图可知:与不平行,A选项错误.根据正方体的性质可知,所以四边形是平行四边形,所以,而,所以,所以B选项正确.根据正方体的性质可知,三角形是等边三角形,直线与所成的角为,所以直线与所成的角为,C选项正确.根据正方体的性质可知,三角形是等边三角形,直线与所成的角为,所以直线与所成的角为,D选项正确.故选:BCD.11.定义在上的函数满足,且.则的图象()A.关于点中心对称 B.关于点中心对称C.关于直线对称 D.关于直线对称〖答案〗BD〖解析〗①,,则②,由①②得,,即③,,④,周期为6,由,得为奇函数⑤,,由③⑤得,,关于对称,由④⑤得,,关于对称,故BD正确.故选:BD.12.为抛物线上的动点,动点到点的距离为(F是的焦点),则()A.的最小值为 B.最小值为C.最小值为 D.最小值为〖答案〗BCD〖解析〗抛物线焦点坐标为,动点到距离为设点为,则整理得,,即,点的轨迹是以为圆心,为半径的圆,设点为,则点到距离时,最小为,最小值为,故A错误.点为,最小为最小值为1,最小为,故B正确.等于点到直线的距离,最小值为到直线的距离减去,即,故C正确.到的距离为最小值为到的距离与和的最小值,即到的距离最小值,设为则到距离为当时,最小值为2,最小值为2,得最小值为,故D正确.故选:BCD.三、填空题13.五名学生每人投篮15次,统计他们每人投中的次数,得到五个数据,若这五个数据的中位数是6,唯一的众数是7,则他们投中次数的总和最大是_________.〖答案〗29〖解析〗假设五个数据按照由小到大排列为,因为这五个数据的中位数是6,唯一的众数是7,所以,所以最大的三个数的和为,因为两个较小的数一定是小于6的非负整数,且不相等,最大为4和5,所以这五个数的和一定大于20且小于等于29,故〖答案〗为:2914.的展开式中,的系数为10,则_________.〖答案〗〖解析〗其展开式的通项公式为,令得因为的系数为10,则,解得,故〖答案〗为:.15.如图数阵中,第一行有两个数据圴为1,将上一行数据中每相邻两数的和插入到两数中,得到下一行数据,形成数阵,则数阵第11行共有_________个数,第行所有数据的和_________.〖答案〗〖解析〗由数阵形成规律,设第行数据有个,则,则,是以1为首项,2为公比的等比数列.则,,设第行数据的和为,第行数据为,则第行数据为,,,得从第二项起,是以为第二项,以3为公比的等比数列,,,时,,.故〖答案〗为:;16.三棱锥中,在底面的射影为的内心,若,,则四面体的外接球表面积为_________.〖答案〗〖解析〗三棱锥底面为直角三角形,为内心,由,可得,以为坐标原点,分别为轴建立平面直角坐标系,如下图所示:设内切圆半径,易知的周长为,面积为;由等面积可得,解得;设四面体外接球球心为,所以易知在平面射影为中点,易知,则,设,则,且,即,解得,则四面体的外接球表面积为.故〖答案〗为:.四、解答题17.某市电视台为了解一档节目收视情况,随机抽取了该市n对夫妻进行调查,根据调查得到每人日均收看该节目的时间绘制成如图所示的频率分布直方图,收视时间不低于40分钟的观众称为“热心观众”,收视时间低于40分钟的观众称为“非热心观众”,已知抽取样本中收视时间低于10分钟的有10人.(1)求n,p;(2)根据已知条件完成下面列联表,试根据小概率值的独立性检验,分析“热心观众”是否与性别有关.非热心观众热心观众总计男女10总计附:,其中.0.100.050.0250.0100.0050.0012.7063.8415.0246.6357.87910.828解:(1)收视时间在分钟组的频率为,,又收视时间低于10分钟的有10人,,;(2)“热心观众”有人,则列联表如下图所示:非热心观众热心观众总计男351550女401050总计7525100零假设:“热心观众”与性别无关联.将列联表数据代入公式计算得:,根据小概率值的独立性检验,没有充分证据证明不成立,因此可认为成立,即认为“热心观众”与性别无关联.18.已知数列的前项和为,且是首项为4,公比为2的等比数列.(1)求;(2)求证:数列的前项和.(1)解:是首项为4,公比为2的等比数列.,,当时,,又,;(2)证明:,,,得.19.如图,圆柱底面直径长为4,C是圆上一点,且.(1)求证:平面平面;(2)若与面所成角为,求平面与平面夹角的余弦值.(1)证明:为圆柱,直线平面,直线直线又直线为圆的直径,,,又,平面,且平面,平面平面.(2)解:过点作于点,连接,平面,平面,所以平面平面,又因为,平面与平面的交线为,所以平面,所以即为与面所成角,即,平面,所以,所以为等腰直角三角形,,,为等边三角形,,,以点为坐标原点,以直线为轴,以过点且垂直于直线的直线为轴,以所在的直线为轴,建立如图所示的空间直角坐标系.根据题意得,,,,,,,设为平面的法向量,,,令,则,,所以平面的法向量为,设为平面的法向量,,,令,则,,所以平面的法向量为,平面与平面夹角的余弦值.20.记的内角的对边分别为,面积为,已知.(1)求的值;(2)若边上的中线,求周长的最小值.解:(1)∵面积为,,且,得,,由正弦定理得:,,,,,.(2)边上中线,,,得,,,,且,即,,当且仅当时,“=”成立.又,由余弦定理得,,,设,,设,,在单调递减,又,,,在单调递减,则最小值为,所以当时,的最小值为,故周长最小值为.21.已知双曲线的右焦点为,渐近线方程为.(1)求双曲线的方程;(2)过的直线与交于两点,过的左顶点作的垂线,垂足为,求证:.(1)解:的右焦点为,渐近线方程为,,,的方
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年规范化工程维修协议样本
- 2024年度防火涂料施工承包协议
- 2024公司股东股权转让协议
- 2024商业合作协议模板
- 2024届安徽省阜阳市第一中学高三高考全真模拟卷(七)数学试题
- 2024年专业建材购销协议格式
- 2023-2024学年重庆一中高三招生统考(二)数学试题模拟试卷
- 2024年幼儿照护服务协议范例
- 2024专业不锈钢定制加工协议范本
- 2024定制大客车租赁业务协议
- 十二指肠溃疡伴穿孔的护理查房
- 市场营销策划(本)-形考任务三(第八~十章)-国开(CQ)-参考资料
- 中信证券测评真题答案大全
- 部编版小学六年级道德与法治上册全册知识点汇编
- 数字时代的数字化政府
- 文旅推广短片策划方案相关7篇
- 2023-2024学年高中主题班会燃激情之烈火拓青春之华章 课件
- 中医药文化进校园-中医药健康伴我行课件
- 市政管道开槽施工-市政排水管道的施工
- 居住建筑户型分析
- 机电一体化职业生涯
评论
0/150
提交评论