下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
类型三新解题方法型例1、求两个正整数的最大公约数是常见的数学问题,中国古代数学专著《九章算术》中便记载了求两个正整数最大公数最大公约数的一种方法——更相减损术,术曰:“可半者半之,不可半者,副置分母、子之数,以少成多,更相减损,求其等也.以等数约之”,意思是说,要求两个正整数的最大公约数,先用较大的数减去较小的数,得到差,然后用减数与差中的较大数减去较小数,以此类推,当减数与差相等时,此时的差(或减数)即为这两个正整数的最大公约数.例如:求91与56的最大公约数eq\a\vs4\al(解:)91-56=3556-35=2135-21=1421-14=714-7=7所以,91与56的最大公约数是7.请用以上方法解决下列问题:(1)求108与45的最大公约数;(2)求三个数78、104、143的最大公约数.【解答】解:(1)108-45=6363-45=1845-18=2727-18=918-9=9所以,108与45的最大公约数是9;(2)①先求104与78的最大公约数,104-78=2678-26=5252-26=26所以,104与78的最大公约数是26;②再求26与143的最大公约数,143-26=117117-26=9191-26=6565-26=3939-26=1326-13=13所以,26与143的最大公约数是13.综上所述,78、104、143的最大公约数是13.例2、数和形是数学的两个主要研究对象,我们经常运用数形结合、数形转化的方法解决一些数学问题.下面我们来探究“由数思形,以形助数”的方法在解决代数问题中的应用.探究:求不等式|x-1|<2的解集(1)探究|x-1|的几何意义【解答】如图①,在以O为原点的数轴上,设点A′对应的数是x-1,由绝对值的定义可知,点A′与点O的距离为|x-1|,可记为A′O=|x-1|.将线段A′O向右平移1个单位得到线段AB,此时点A对应的数是x,点B对应的数是1.因为AB=A′O,所以AB=|x-1|.因此,|x-1|的几何意义可以理解为数轴上x所对应的点A与1所对应的点B之间的距离AB.第2题图(2)求方程|x-1|=2的解【解答】因为数轴上3和-1所对应的点与1所对应的点之间的距离都为2,所以方程的解为3,-1.(3)求不等式|x-1|<2的解集因为|x-1|表示数轴上x所对应的点与1所对应的点之间的距离,所以求不等式解集就转化为求这个距离小于2的点对应的数x的范围.请在图②的数轴上表示|x-1|<2的解集,并写出这个解集.【解答】解:在数轴上表示如解图所示.第2题解图所以,不等式的|x-1|<2的解集为-1<x<3.例3、古希腊数学家丢番图(公元250年前后)在《算术》中提到了一元二次方程的问题,不过当时古希腊人还没有寻求到它的求根公式,只能用图解等方法来求解.在欧几里得的《几何原本》中,形如x2+ax=b2(a>0,b>0)的方程的图解法是:如图,以eq\f(a,2)和b为两直角边作Rt△ABC,再在斜边上截取BD=eq\f(a,2),则AD的长就是所求方程的解.(1)请用含字母a、b的代数式表示AD的长.(2)请利用你已学的知识说明该图解法的正确性,并说说这种解法的遗憾之处.第3题图【解答】解:(1)∵∠C=90°,BC=eq\f(a,2),AC=b,∴AB=eq\r(b2+\f(a2,4)),∴AD=eq\r(b2+\f(a2,4))-eq\f(a,2)=eq\f(\r(4b2+a2)-a,2);(2)用求根公式求得:x1=eq\f(-\r(4b2+a2)-a,2);x2=eq\f(\r(4b2+a2)-a,2)故AD的长就是方程的正根,遗憾之处:图解法不能表示方程的负根.例4、请你阅读引例及其分析解答,希望能给你以启示,然后完成对探究一和探究二的解答.引例:设a,b,c为非负实数,求证:eq\r(a2+b2)+eq\r(b2+c2)+eq\r(c2+a2)≥eq\r(2)(a+b+c),分析:考虑不等式中各式的几何意义,我们可以试构造一个边长为a+b+c的正方形来研究.解:如图①,设正方形的边长为a+b+c,则AB=eq\r(a2+b2),BC=eq\r(b2+c2),CD=eq\r(a2+c2),显然AB+BC+CD≥AD,∴eq\r(a2+b2)+eq\r(b2+c2)+eq\r(c2+a2)≥eq\r(2)(a+b+c).探究一:已知两个正数x,y,满足x+y=12,求eq\r(x2+4)+eq\r(y2+9)的最小值(图②仅供参考);探究二:若a,b为正数,求以eq\r(a2+b2),eq\r(4a2+b2),eq\r(a2+4b2)为边的三角形的面积.第4题图【解答】解:探究一:如解图①,构造矩形AECF,并设矩形的两边长分别为12,5,第4题解图①则x+y=12,AB=eq\r(x2+4),BC=eq\r(y2+9),显然AB+BC≥AC,当A,B,C三点共线时,AB+BC最小,即eq\r(x2+4)+eq\r(y2+9)的最小值为AC,∵AC=eq\r(122+52)=13,∴eq\r(x2+4)+eq\r(y2+9)的最小值为13;第4题解图②探究二:如解图②,设矩形ABCD的两边长分别为2a,2b,E,F分别为AB,AD的中点,则CF=eq\r(4a2+b2),CE=eq\r(a2+4b2),EF=eq\r(a2+b2),设以eq\r(a2+b2),eq\r(4a2+b2),eq\r(a2+4b2)为边的三角形的面积为S△CEF,∴S△CEF=S矩形ABCD-S△CDF-S△AEF-S△BCE=4
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024特岗教师聘用及教师团队协作能力提升服务合同3篇
- 2025年度新能源车辆采购及维护服务合同范本2篇
- 2025年度智能家居系统代理商合作协议4篇
- 2025年度新能源汽车研发出资人合作协议4篇
- 2025年度旅游景区特色商品档口租赁经营合同3篇
- 2025年度水电工程安全监测系统安装与维护服务合同3篇
- 2024版食堂承包合同协议范文
- 2025年度特殊岗位人员辞退及安置协议范本4篇
- 2025年度智能机器人研发股权合作协议4篇
- 2025年度文化产业园区运营管理合同3篇
- 小学数学六年级解方程练习300题及答案
- 电抗器噪声控制与减振技术
- 中医健康宣教手册
- 2024年江苏扬州市高邮市国有企业招聘笔试参考题库附带答案详解
- 消费医疗行业报告
- 品学课堂新范式
- GB/T 1196-2023重熔用铝锭
- 运输行业员工岗前安全培训
- 公路工程安全风险辨识与防控手册
- 幼儿园教师培训:计数(数数)的核心经验
- 如何撰写和发表高水平的科研论文-good ppt
评论
0/150
提交评论