版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
专题2.29二元一次方程组中考真题专练(巩固篇)(专项练习)一、单选题1.(2020·湖南益阳·中考真题)同时满足二元一次方程和的,的值为()A. B. C. D.2.(2019·江苏南通·中考真题)已知a、b满足方程组,则a+b的值为(
)A.2 B.4 C.—2 D.—43.(2019·湖北荆门·中考真题)已知实数满足方程组,则的值为(
)A. B.1 C.3 D.4.(2019·四川巴中·中考真题)已知关于x、y的二元一次方程组的解是,则的值是(
)A.1 B.2 C.﹣1 D.05.(2021·广东深圳·中考真题)《九章算术》中有问题:1亩好田是300元,7亩坏田是500元,一人买了好田坏田一共是100亩,花费了10000元,问他买了多少亩好田和坏田?设一亩好田为x元,一亩坏田为y元,根据题意列方程组得(
)A. B.C. D.6.(2021·湖北宜昌·中考真题)我国古代数学经典著作《九章算术》中有这样一题,原文是:“今有共买物,人出八,盈三;人出七,不足四.问人数、物价各几何?”意思是:今有人合伙购物,每人出八钱,会多三钱;每人出七钱,又差四钱.问人数、物价各多少?设人数为人,物价为钱,下列方程组正确的是(
)A. B. C. D.7.(2021·浙江宁波·中考真题)我国古代数学名著《张邱建算经》中记载:“今有清洒一斗直粟十斗,醑酒一斗直粟三斗.今持粟三斛,得酒五斗,问清、醑酒各几何?”意思是:现在一斗清酒价值10斗谷子,一斗醑酒价值3斗谷子,现在拿30斗谷子,共换了5斗酒,问清酒、醑酒各几斗?如果设清酒x斗,醑酒y斗,那么可列方程组为(
)A. B. C. D.8.(2020·四川绵阳·中考真题)《九章算术》中记载“今有共买羊,人出五,不足四十五;人出七,不足三,问人数、羊价各几何?”其大意是:今有人合伙买羊,若每人出5钱,还差45钱;若每人出7钱,还差3钱,问合伙人数、羊价各是多少?此问题中羊价为()A.160钱 B.155钱 C.150钱 D.145钱9.(2020·黑龙江鹤岗·中考真题)学校计划用200元钱购买、两种奖品,种每个15元,B种每个25元,在钱全部用完的情况下,有多少种购买方案(
)A.2种 B.3种 C.4种 D.5种10.(2020·湖北恩施·中考真题)我国古代数学著作《九章算术》“盈不足”一章中记载:“今有大器五小器一容三斛,大器一小器五容二斛,问大小器各容几何”.意思是:有大小两种盛酒的桶,已知5个大桶加上1个小桶可以盛酒3斛,1个大桶加上5个小桶可以盛酒2斛.问1个大桶、1个小桶分别可以盛酒多少斛?设1个大桶盛酒斛,1个小桶盛酒斛,下列方程组正确的是(
).A. B. C. D.11.(2020·黑龙江黑龙江·中考真题)在抗击疫情网络知识竞赛中,为奖励成绩突出的学生,学校计划用元钱购买、、三种奖品,种每个元,种每个元,种每个元,在种奖品不超过两个且钱全部用完的情况下,有多少种购买方案(
)A.种 B.种 C.种 D.种12.(2020·浙江绍兴·中考真题)同型号的甲、乙两辆车加满气体燃料后均可行驶210km.它们各自单独行驶并返回的最远距离是105km.现在它们都从A地出发,行驶途中停下来从甲车的气体燃料桶抽一些气体燃料注入乙车的气体燃料桶,然后甲车再行驶返回A地,而乙车继续行驶,到B地后再行驶返回A地.则B地最远可距离A地()A.120km B.140km C.160km D.180km13.(2020·黑龙江绥化·中考真题)学校八年级师生共466人准备参加社会实践活动,现已预备了49座和37座两种客车共10辆,刚好坐满.设49座客车x辆,37座客车y辆,根据题意可列出方程组(
)A. B. C. D.14.(2019·湖南永州·中考真题)某公司有如图所示的甲、乙、丙、丁四个生产基地.现决定在其中一个基地修建总仓库,以方便公司对各基地生产的产品进行集中存储.已知甲、乙、丙、丁各基地的产量之比等于4:5:4:2,各基地之间的距离之比a:b:c:d:e=2:3:4:3:3(因条件限制,只有图示中的五条运输渠道),当产品的运输数量和运输路程均相等时,所需的运费相等.若要使总运费最低,则修建总仓库的最佳位置为()A.甲 B.乙 C.丙 D.丁15.(2019·青海·中考真题)(2011四川泸州,6,2分)如图所示的两台天平保持平衡,已知每块巧克力的重量相等,且每个果冻的重量也相等,则每块巧克力和每个果冻的重量分别为()A.10g,40g B.15g,35g C.20g,30g D.30g,20g二、填空题16.(2020·辽宁沈阳·中考真题)二元一次方程组的解是_____________.17.(2020·甘肃天水·中考真题)已知,,则的值为_________.18.(2020·浙江绍兴·中考真题)若关于x,y的二元一次方程组的解为,则多项式A可以是_____(写出一个即可).19.(2020·湖南衡阳·中考真题)某班有52名学生,其中男生人数是女生人数的2倍少17人,则女生有_________名.20.(2019·湖北鄂州·中考真题)若关于、的二元一次方程组的解满足,则的取值范围是____.21.(2019·四川内江·中考真题)若为实数,且,则代数式的最大值是_____.22.(2019·贵州贵州·中考真题)已知是方程组的解,则的值为__.23.(2019·四川凉山·中考真题)方程组的解是_______.24.(2021·内蒙古呼伦贝尔·中考真题)《九章算术》是我国东汉初年编订的一部数学经典著作,其中一次方程组是用算筹布置而成,如图(1)所示的算筹图用我们现在所熟悉的方程组表示出来,就是,类似的,图(2)所示的算筹图用方程组表示出来,就是______________.25.(2021·内蒙古通辽·中考真题)我国古代数学著作《增删算法统宗》记载“绳索量竿”问题:“一条竿子一条索,索比竿子长一托.折回索子却量竿,却比竿子短一托.”其大意为:现有一根竿和一条绳索,用绳索去量竿,绳索比竿长5尺;如果将绳索对半折后再去量竿,就比竿短5尺.设绳索长尺,竿长尺,则符合题意的方程组是________________________26.(2021·重庆·中考真题)盲盒为消费市场注入了活力,既能够营造消费者购物过程中的趣味体验,也为商家实现销售额提升拓展了途径.某商家将蓝牙耳机、多接口优盘、迷你音箱共22个,搭配为A,B,C三种盲盒各一个,其中A盒中有2个蓝牙耳机,3个多接口优盘,1个迷你音箱;B盒中蓝牙耳机与迷你音箱的数量之和等于多接口优盘的数量,蓝牙耳机与迷你音箱的数量之比为3:2;C盒中有1个蓝牙耳机,3个多接口优盘,2个迷你音箱.经核算,A盒的成本为145元,B盒的成本为245元(每种盲盒的成本为该盒中蓝牙耳机、多接口优盘、迷你音箱的成本之和),则C盒的成本为__________元.27.(2020·贵州黔南·中考真题)《九章算术》是我国古代一部著名的算书,它的出现标志着中国古代数学形成了完整的体系其中卷八方程[七]中记载:“今有牛五、羊二,直金十两.牛二、羊五,直金八两.牛、羊各直金几何?”题目大意是:5头牛、2只羊共值金10两.2头牛、5只羊共值金8两.每头牛、每只羊各值金多少两?设1头牛值金两,1只羊值金两,则可列方程组为_________.28.(2020·湖南岳阳·中考真题)《九章算术》中有这样一个题:“今有醇酒一斗,直钱五十;行酒一斗,直钱一十.今将钱三十,得酒二斗.问醇、行酒各得几何?”其译文是:今有醇酒(优质酒)1斗,价值50钱;行酒(劣质酒)1斗,价值10钱.现有30钱,买得2斗酒.问醇酒、行酒各能买得多少?设醇酒为x斗,行酒为y斗,则可列二元一次方程组为_____.29.(2019·重庆·中考真题)某磨具厂共有六个生产车间,第一、二、三、四车间每天生产相同数量的产品,第五、六车间每天生产的产品数量分别是第一车间每天生产的产品数量的和.甲、乙两组检验员进驻该厂进行产品检验,在同时开始检验产品时,每个车间原有成品一样多,检验期间各车间继续生产.甲组用了6天时间将第一、二、三车间所有成品同时检验完;乙组先用2天将第四、五车间的所有成品同时检验完后,再用了4天检验完第六车间的所有成品(所有成品指原有的和检验期间生产的成品).如果每个检验员的检验速度一样,则甲、乙两组检验员的人数之比是________.30.(2019·重庆·中考真题)在精准扶贫的过程中,某驻村服务队结合当地高山地形,决定在该村种植中药材川香、贝母、黄连增加经济收入,经过一段时间,该村已种植的川香、贝母、黄连面积之比4:3:5,是根据中药材市场对川香、贝母、黄连的需求量,将在该村余下土地上继续种植这三种中药材,经测算需将余下土地面积的种植黄连,则黄连种植总面积将达到这三种中药材种植总面积的.为使川香种植总面积与贝母种植总面积之比达到3:4,则该村还需种植贝母的面积与该村种植这三种中药材的总面积之比是____.三、解答题31.(2021·浙江台州·中考真题)解方程组:32.(2021·西藏·中考真题)列方程(组)解应用题为振兴农村经济,某县决定购买A,B两种药材幼苗发给农民栽种,已知购买2棵A种药材幼苗和3棵B种药材幼苗共需41元.购买8棵A种药材幼苗和9棵B种药材幼苗共需137元.问每棵A种药材幼苗和每棵B种药材幼苗的价格分别是多少元?33.(2021·广西贺州·中考真题)为了提倡节约用水,某市制定了两种收费方式:当每户每月用水量不超过时,按一级单价收费;当每户每月用水量超过时,超过部分按二级单价收费.已知李阿姨家五月份用水量为,缴纳水费32元.七月份因孩子放假在家,用水量为,缴纳水费51.4元.(1)问该市一级水费,二级大费的单价分别是多少?(2)某户某月缴纳水费为64.4元时,用水量为多少?34.(2021·湖南邵阳·中考真题)为庆祝中国共产党成立100周年,某校计划举行“学党史·感党恩”知识竞答活动,并计划购置篮球、钢笔、笔记本作为奖品.采购员刘老师在某文体用品购买了做为奖品的三种物品,回到学校后发现发票被弄花了,有几个数据变得不清楚,如图.请根据图所示的发票中的信息,帮助刘老师复原弄花的数据,即分别求出购置钢笔、笔记本的数量及对应的金额.35.(2021·四川泸州·中考真题)某运输公司有A、B两种货车,3辆A货车与2辆B货车一次可以运货90吨,5辆A货车与4辆B货车一次可以运货160吨.(1)请问1辆A货车和1辆B货车一次可以分别运货多少吨?(2)目前有190吨货物需要运输,该运输公司计划安排A、B两种货车将全部货物一次运完(A、B两种货车均满载),其中每辆A货车一次运货花费500元,每辆B货车一次运货花费400元.请你列出所有的运输方案,并指出哪种运输方案费用最少.36.(2020·海南·中考真题)某村经济合作社决定把吨竹笋加工后再上市销售,刚开始每天加工吨,后来在乡村振兴工作队的指导下改进加工方法,每天加工吨,前后共用天完成全部加工任务,问该合作社改进加工方法前后各用了多少天?37.(2020·江苏扬州·中考真题)阅读感悟:有些关于方程组的问题,欲求的结果不是每一个未知数的值,而是关于未知数的代数式的值,如以下问题:已知实数x、y满足①,②,求和的值.本题常规思路是将①②两式联立组成方程组,解得x、y的值再代入欲求值的代数式得到答案,常规思路运算量比较大.其实,仔细观察两个方程未知数的系数之间的关系,本题还可以通过适当变形整体求得代数式的值,如由①②可得,由①②可得.这样的解题思想就是通常所说的“整体思想”.解决问题:(1)已知二元一次方程组,则________,________;(2)某班级组织活动购买小奖品,买20支铅笔、3块橡皮、2本日记本共需32元,买39支铅笔、5块橡皮、3本日记本共需58元,则购买5支铅笔、5块橡皮、5本日记本共需多少元?(3)对于实数x、y,定义新运算:,其中a、b、c是常数,等式右边是通常的加法和乘法运算.已知,,那么________.38.(2020·江西·中考真题)放学后,小贤和小艺来到学校附近的地摊上购买一种特殊型号的笔芯和卡通笔记本,这种笔芯每盒10支,如果整盒买比单支买每支可优惠0.5元,小贤要买3支笔芯,2本笔记本需花19元,小艺要买7支笔芯,1本笔记本需花费26元.(1)求笔记本的单价和单独购买一支笔芯的价格;(2)小贤和小艺都还想再买一件单价为3元的小工艺品,但如果他们各自为要买的文具付款后,只有小贤还剩2元钱,他们要怎样做才能既买到各自的文具,又都买到小工艺品,请通过运算说明.39.(2020·江苏徐州·中考真题)本地某快递公司规定:寄件不超过千克的部分按起步价计费;寄件超过千克的部分按千克计费.小丽分别寄快递到上海和北京,收费标准及实际收费如下表:收费标准目的地起步价(元)超过千克的部分(元千克)上海北京实际收费目的地质量费用(元)上海北京求,的值.参考答案1.A【解析】【分析】联立和解二元一次方程组即可.【详解】解:有题意得:由①得x=9+y③将③代入②得:36+4y+3y=1,解得y=-5则x=9+(-5)=4所以x=4,y=-5.故选:A.【点拨】本题考查了二元一次方程组的应用及解法,掌握二元一次方程组的解法是解答本题的关键.2.A【解析】【分析】观察可知将两个方程相加得,化简即可求得答案.【详解】,①+②,得5a+5b=10,所以a+b=2,故选A.【点拨】本题考查了二元一次方程组的特殊解法,根据二元一次方程组的特点灵活选用恰当的方法是解题的关键.3.A【解析】【分析】首先解方程组,求出的值,然后代入所求代数式即可.【详解】,,得,解得,把代入②得,,解得,.故选A.【点拨】此题主要考查了二元一次方程组解的定义.以及解二元一次方程组的基本方法.正确解关于、的方程组是关键.4.B【解析】【分析】将代入即可求出a与b的值;【详解】解:将代入得:,∴;故选B.【点拨】本题考查二元一次方程组的解;熟练掌握方程组与方程组的解之间的关系是解题的关键.5.B【解析】【分析】设一亩好田为x元,一亩坏田为y元,根据7亩坏田是500元可得每亩坏田的价格,根据好田坏田一共是100亩,花费了10000元列方程组即可得答案.【详解】设一亩好田为x元,一亩坏田为y元,∵7亩坏田是500元,∴每亩坏田元,∵买了好田坏田一共是100亩,花费了10000元,∴,故选:B.【点拨】本题考查二元一次方程组的应用,读懂题意,找出等量关系是解题关键.6.A【解析】【分析】根据题设人数为x人,物价为y钱,抓住等量关系每人出八钱8x剩三钱;每人出七钱7x少4钱,列方程组即可.【详解】解:由题设人数为x人,物价为y钱,由每人出八钱,会多三钱;总钱数y=8x-3,每人出七钱,又差四钱;总钱数y=7x+4,∴联立方程组为.故选:A.【点拨】本题考查列二元一次方程组解应用题,掌握列二元一次方程组解应用题的方法与步骤,抓住等量关系:每人出八钱8x剩三钱;每人出七钱7x少4钱列方程组是解题关键.7.A【解析】【分析】根据“现在拿30斗谷子,共换了5斗酒”,即可得出关于x,y的二元一次方程组,此题得解.【详解】解:依题意,得:.故选:A.【点拨】本题考查了由实际问题抽象出二元一次方程组和数学常识,找准等量关系,正确列出二元一次方程组是解题的关键.8.C【解析】【分析】设共有x人合伙买羊,羊价为y钱,根据“若每人出5钱,还差45钱;若每人出7钱,还差3钱”,即可得出关于x,y的二元一次方程组,解之即可得出结论.【详解】解:设共有x人合伙买羊,羊价为y钱,依题意,得:解得:故选:C.【点拨】本题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键.9.B【解析】【分析】设购买了A种奖品x个,B种奖品y个,根据学校计划用200元钱购买A、B两种奖品,其中A种每个15元,B种每个25元,钱全部用完可列出方程,再根据x,y为正整数可求出解.【详解】设购买了种奖品个,种奖品个,根据题意得:,化简整理得:,得,∵,为非负整数,∴,,,∴有3种购买方案:方案1:购买了种奖品0个,种奖品8个;方案2:购买了种奖品5个,种奖品5个;方案3:购买了种奖品10个,种奖品2个.故选:B.【点拨】本题考查了二元一次方程的应用,关键是读懂题意,根据题意列出二元一次方程,然后根据解为非负整数确定出x,y的值.10.A【解析】【分析】根据大小桶所盛酒的数量列方程组即可.【详解】∵5个大桶加上1个小桶可以盛酒3斛,∴5x+y=3,∵1个大桶加上5个小桶可以盛酒2斛,∴x+5y=2,∴得到方程组,故选:A.【点拨】此题考查二元一次方程组的实际应用,正确理解题意是解题的关键.11.D【解析】【分析】设购买、、三种奖品分别为个,根据题意列方程得,化简后根据均为正整数,结合种奖品不超过两个分类讨论,确定解的个数即可.【详解】解:设购买、、三种奖品分别为个,根据题意列方程得,即,由题意得均为正整数.①当z=1时,∴,∴y分别取1,3,5,7,9,11,13,15共8种情况时,x为正整数;②当z=2时,∴,∴y可以分别取2,4,6,8,10,12共6种情况,x为正整数;综上所述:共有8+6=14种购买方案.故选:D【点拨】本题考查了求方程组的正整数解,根据题意列出方程,并确定方程组的解为正整数是解题关键.12.B【解析】【分析】设甲行驶到C地时返回,到达A地燃料用完,乙行驶到B地再返回A地时燃料用完,然后画出图形、确定等量关系、列出关于x和y的二元一次方程组并求解即可.【详解】解:设甲行驶到C地时返回,到达A地燃料用完,乙行驶到B地再返回A地时燃料用完,如图:设AB=xkm,AC=ykm,根据题意得:,解得:.∴乙在C地时加注行驶70km的燃料,则AB的最大长度是140km.故答案为B.【点拨】本题考查了二元一次方程组在行程问题中的应用,弄清题意、确定等量关系、列出方程组是解答本题的关键.13.A【解析】【分析】设49座客车x辆,37座客车y辆,根据49座和37座两种客车共10辆,及10辆车共坐466人,且刚好坐满,即可列出方程组.【详解】解:设49座客车x辆,37座客车y辆,根据题意得:故选:A.【点拨】本题考查了由实际问题抽象出二元一次方程组,根据实际问题中的条件列方程组时,要注意抓住题目中的一些关键性词语,找出等量关系,列出方程组.14.A【解析】【分析】设甲基地的产量为4x吨,则乙、丙、丁基地的产量分别为5x吨、4x吨、2x吨,设a=2y千米,则b、c、d、e分别为3y千米、4y千米、3y千米、3y千米,设运输的运费每吨为z元/千米,①设在甲处建总仓库,则运费最少为:(5x×2y+4x×3y+2x×3y)z=28xyz;②设在乙处建总仓库,则运费最少为:(4x×2y+4x×3y+2x×5y)z=30xyz;③设在丙处建总仓库,则运费最少为:(4x×3y+5x×3y+2x×4y)z=35xyz;④设在丁处建总仓库,则运费最少为:(4x×3y+5x×5y+4x×4y)z=53xyz;进行比较运费最少的即可.【详解】∵甲、乙、丙、丁各基地的产量之比等于4:5:4:2,设甲基地的产量为4x吨,则乙、丙、丁基地的产量分别为5x吨、4x吨、2x吨,∵各基地之间的距离之比a:b:c:d:e=2:3:4:3:3,设a=2y千米,则b、c、d、e分别为3y千米、4y千米、3y千米、3y千米,设运输的运费每吨为z元/千米,①设在甲处建总仓库,则运费最少为:(5x×2y+4x×3y+2x×3y)z=28xyz;②设在乙处建总仓库,∵a+d=5y,b+c=7y,∴a+d<b+c,则运费最少为:(4x×2y+4x×3y+2x×5y)z=30xyz;③设在丙处建总仓库,则运费最少为:(4x×3y+5x×3y+2x×4y)z=35xyz;④设在丁处建总仓库,则运费最少为:(4x×3y+5x×5y+4x×4y)z=53xyz;由以上可得建在甲处最合适,故选A.【点拨】本题考查了三元一次方程的应用;设出未知数,求出各个运费是解题的关键.15.C【解析】【详解】考点:二元一次方程组的应用.分析:根据图可得:3块巧克力的重=2个果冻的重;1块巧克力的重+1个果冻的重=50克,由此可设出未知数,列出方程组.解答:解:设每块巧克力的重x克,每个果冻的重y克,由题意得:,解得:.故选C.点评:此题主要考查了二元一次方程组的应用,关键是弄懂题意,找出题目中的相等关系,列出方程组.16.【解析】【详解】解:,①+②得:3x=6,解得:x=2,把x=2代入①得:y=3,所以方程组的解为.故答案为.【点拨】本题主要考查了二元一次方程组的解法,根据方程组中未知数系数的特点选择恰当的方法消元是解决此题的关键.17.1【解析】【分析】观察已知条件可得两式中a与b的系数的差相等,因此把两式相减即可得解.【详解】解:①,②,②-①得,2a+2b=2,解得:a+b=1,故答案为:1.【点拨】此题主顾考查了二元一次方程组的特殊解法,观察条件的结构特征得出2a+2b=2是解答此题的关键.18.x﹣y(答案不唯一)【解析】【分析】根据方程组的解的定义,应该满足所写方程组的每一个方程.因此,可以围绕列一组算式,然后用x,y代换即可.【详解】∵关于x,y的二元一次方程组的解为,而1﹣1=0,∴多项式A可以是答案不唯一,如x﹣y.故答案为:x﹣y(答案不唯一).【点拨】此题考查二元一次方程组的定义,二元一次方程组的解,正确理解方程组的解与每个方程的关系是解题的关键.19.23【解析】【分析】关系式为:男生人数+女生人数=52,男生人数=2×女生人数-17.把相关数值代入即可求解.【详解】设男生人数为x人,女生人数为y人.由此可得方程组.解得,所以,男生有29人,女生有23人,故答案为:23.【点拨】本题考查了由实际问题抽象二元一次方程组的知识,解答本题的关键是仔细审题得到等量关系,根据等量关系建立方程.20.【解析】【分析】首先解关于和的方程组,利用表示出,代入即可得到关于的不等式,求得的范围.【详解】解:,①+②得,则,根据题意得,解得.故答案是:.【点拨】本题考查的是解二元一次方程组和解一元一次不等式,解答此题的关键是把当作已知数表示出的值,再得到关于的不等式.21.26.【解析】【分析】先利用加减消元法求出y,x的值,再把x,y代入代数式,求出z的值,即可解答【详解】,(1)﹣(2)得,,把代入(1)得,,则,当时,的最大值是26,故答案为26.【点拨】此题考查解三元一次方程,解题关键在于掌握运算法则22.1.【解析】【分析】先把x=a,y=b,代入原方程组,再解关于a、b的二元一次方程组,代入要求的代数式即可得出答案.【详解】把代入方程组得:,①+②得:,,故答案为.【点拨】本题考查了二元一次方程组的解,先将x,y的值代入,再计算即可.23.【解析】【分析】利用加减消元法解之即可.【详解】解:,②﹣①得:,把代入①得:,解得:,方程组的解为:,故答案为【点拨】考查了解二元一次方程组,正确掌握加减消元法是解题的关键.24.【解析】【分析】先根据例子和图(2)列出二元一次方程组并求解即可.【详解】解:由图1可得,第一列为x的系数、第二列为y的系数,第三列和第四列为方程右边的常数,且前两列一竖表示1,第三列一横表示10,第四列一竖表示1,一横表示5则根据图2可得:.故填.【点拨】本题考查了列二元一次方程组,审清题意、明确图1各符号的含义成为解答本题的关键.25.【解析】【分析】设绳索长为x尺,竿子长为y尺,根据“索比竿子长一托,折回索子却量竿,却比竿子短一托”,即可得出关于x、y的二元一次方程组.【详解】解:根据题意得:.故答案为:.【点拨】本题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键.26.155【解析】【分析】设B盒中蓝牙耳机3a个,迷你音箱2a个,列方程求出B盒中各种设备的数量,再设蓝牙耳机、多接口优盘、迷你音箱的成本分别为x、y、z元,根据题意列出方程组,再整体求出的值即可.【详解】解:根据题意,设B盒中蓝牙耳机3a个,迷你音箱2a个,优盘的数量为3a+2a=5a个,则,解得,a=1;设蓝牙耳机、多接口优盘、迷你音箱的成本分别为x、y、z元,根据题意列方程组得,②-①得,,③×3-①得,,故答案为:155.【点拨】本题考查了三元一次方程组和一元一次方程的应用,解题关键是找准题目中的等量关系列出方程(组),熟练运用等式的性质进行方程变形,整体求值.27.【解析】【分析】设1头牛值金两,1只羊值金两,根据等量关系“①5头牛,2只羊共值10两金;②2头牛,5只羊共价值8两金”,分别列出方程即可求解.【详解】设1头牛值金两,1只羊值金两,由题意可得,.故答案为:.【点拨】本题主要考查了二元一次方程组的应用,根据题意得出正确的等量关系是解题关键.28.【解析】【分析】设买美酒x斗,买普通酒y斗,根据“美酒一斗的价格是50钱、买两种酒2斗共付30钱”列出方程组.【详解】设买美酒x斗,买普通酒y斗,依题意得:,故答案是:.【点拨】考查了由实际问题抽象出二元一次方程组,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程组.29.18:19【解析】【分析】设第一、二、三、四车间每天生产相同数量的产品为x个,每个车间原有成品m个,甲组检验员a人,乙组检验员b人,每个检验员的检验速度为c个/天,根据题意列出三元一次方程组,解方程组得到答案.【详解】解:设第一、二、三、四车间每天生产相同数量的产品为x个,每个车间原有成品m个,甲组检验员a人,乙组检验员b人,每个检验员的检验速度为c个/天,则第五、六车间每天生产的产品数量分別是和,由题意得,,得,,把分别代入①得,,把分别代入②得,,则,甲、乙两组检验员的人数之比是18:19,故答案为18:19.【点拨】本题考查的是三元一次方程组的应用,根据题意正确列出三元一次方程组、正确解出方程组是解题的关键.30.3:20【解析】【分析】设该村已种药材面积x,余下土地面积为y,还需种植贝母的面积为z,则总面积为(x+y),川香已种植面积x、贝母已种植面积x、黄连已种植面积x,依题意列出方程组,用y的代数式分别表示x、y,然后进行计算即可.【详解】解:设该村已种药材面积x,余下土地面积为y,还需种植贝母的面积为z,则总面积为(x+y),川香已种植面积x、贝母已种植面积x、黄连已种植面积x依题意可得,由①得将③代入②得∴贝母的面积与该村种植这三种中药材的总面积之比=故答案为3:20.【点拨】本题考查了三元一次方程组,正确找出等量关系并列出方程是解题的关键31..【解析】【分析】观察方程组中同一未知数的系数特点:x的系数存在倍数关系,而y的系数互为相反数,因此将两方程相加,消去y求出x,再求出y的值,可得到方程组的解.【详解】解:①+②得:3x=3,
即x=1,把x=1代入①得:y=2,则方程组的解为.【点拨】此题考查解二元一次方程组,解题关键在于利用加减消元法.32.每棵A种药材幼苗的价格是7元,每棵B种药材幼苗的价格是9元.【解析】【分析】设每棵A种药材幼苗的价格是x元,每棵B种药材幼苗的价格是y元,根据“购买2棵A种药材幼苗和3棵B种药材幼苗共需41元.购买8棵A种药材幼苗和9棵B种药材幼苗共需137元”,即可得出关于x,y的二元一次方程组,解之即可得出结论.【详解】解:设每棵A种药材幼苗的价格是x元,每棵B种药材幼苗的价格是y元,依题意得:,解得:,答:每棵A种药材幼苗的价格是7元,每棵B种药材幼苗的价格是9元.【点拨】本题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键.33.(1)一级水费的单价为3.2元/,二级水费的单价为6.5元/;(2)【解析】【分析】(1)设该市一级水费的单价为元/,二级水费的单价为元/,根据题意,列出二元一次方程组,即可求解;(2)先判断水量超过,设用水量为,列出方程,即可求解.【详解】(1)设该市一级水费的单价为元/,二级水费的单价为元/,依题意得,解得,答:该市一级水费的单价为3.2元/,二级水费的单价为6.5元/.(2)当水费为64.4元,则用水量超过,设用水量为,得,,解得:.答:当缴纳水费为64.4元时,用水量为.【点拨】本题主要考查二元一次方程组以及一元一次方程的实际应用,找准等量关系,列出方程(组),是解题的关键.34.购置钢笔15支,金额为225元,购置笔记本34本,金额为175元【解析】【分析】根据题意可知钢笔和笔记本一共50个,两种物品的金额1000-600=400元,再根据题意列二元一次方程组即可【详解】解:设钢笔买了x支,笔记本买了y本根据题意可得:钢笔和笔记本一共56-6=50个钢笔和笔记本两种物品的金额一共1000-600=400元则有解得:则购置笔记本金额为:35×5=175元购置钢笔金额为:15×15=225元答:购置钢笔15支,金额为225元,购置笔记本34本,金额为175元【点拨】本题考查列二元一次方程组解决实际问题,根据已知条件正确的找出等量关系是关键35.(1)1辆A货车和1辆B货车一次可以分别运货20吨和15吨;(2)共有3种租车方案,方案1:租用A型车8辆,B型车2辆;方案2:租用A型车5辆,B型车6辆;方案3:租用A型车2辆,B型车10辆;租用A型车8辆,B型车2辆最少.【解析】【分析】(1)设1辆A货车和1辆B货车一次可以分别运货x吨和y吨,根据“3辆A货车与2辆B货车一次可以运货90吨,5辆A货车与4辆B货车一次可以运货160吨”列方程组求解可得;(2)设货运公司安排A货车m辆,则安排B货车n辆.根据“共有190吨货物”列出二元一次方程组,结合m,n均为正整数,即可得出各运输方案.再根据方案计算比较得出费用最小的数据.【详解】解:(1)1辆A货车和1辆B货车一次可以分别运货x吨和y吨,根据题意可得:,解得:,答:1辆A货车和1辆B货车一次可以分别运货20吨和15吨;(2)设安排A型车m辆,B型车n辆,依题意得:20m+15n=190,即,又∵m,n均为正整数,∴或或,∴共有3种运输方案,方案1:安排A型车8辆,B型车2辆;方案2:安排A型车5辆,B型车6辆;方案3:安排A型车2辆,B型车10辆.方案1所需费用:5008+4002=4800(元);方案2所需费用:5005+4006=4900(元);方案3所需费用:5002+40010=5000(元);∵4800<4900<5000,∴安排A型车8辆,B型车2辆最省钱,最省钱的运输费用为4800元.【点拨】本题考查了二元一次方程组的应用以及二元一次方程的应用,解题的关键是:(1)找准等量关系,正确列出二元一次方程组;(2)找准等量关系,正确
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 心衰护理课件教学课件
- 淮阴工学院《通信原理1》2022-2023学年第一学期期末试卷
- DB5116T17-2024电梯维护保养质量要求与抽查规则
- DB 3705-T 16-2024《管花肉苁蓉培育技术规程》
- 企业管理-《固定资产移交报告》
- 海水养殖的环境影响评估方法考核试卷
- 合成材料制造的工艺装备更新考核试卷
- 外卖行业的季节性波动分析考核试卷
- 煤炭行业的国际市场拓展与合作考核试卷
- 城市轨道交通的科技创新与产业发展考核试卷
- 湖北机场集团限公司2024年春季校园招聘【35人】(高频重点提升专题训练)共500题附带答案详解
- 河南省附属绿地绿化规划设计规范
- 微测网题库完整版行测
- 2023年中级会计实务试题及答案大全
- T-CPQS C010-2024 鉴赏收藏用潮流玩偶及类似用途产品
- 代运营合作服务协议
- 有限空间作业应急管理制度
- 慢性肾衰竭-课件
- 罗兰贝格-正泰集团品牌战略项目-品牌战略设计与高阶落地建议报告-20180627a
- 2024砍伐树木合同书
- 2024年02月重庆市沙坪坝区事业单位2024年第一季度公开招聘167名工作人员0笔试历年典型考题及考点研判与答案解析
评论
0/150
提交评论