




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
checkfor
updates
AutomationinConstruction157(2024)105187
Contentslistsavailableat
ScienceDirect
AutomationinConstruction
journalhomepage:
/locate/autcon
Review
GenerativeAIdesignforbuildingstructures
WenjieLiao
aXinzhengLua,,
*,YifanFei
b,YiGub,YuliHuang
a
aKeyLaboratoryofCivilEngineeringSafetyandDurabilityofMinistryofEducation,TsinghuaUniversity,Beijing100084,China
bBeijingEngineeringResearchCenterofSteelandConcreteCompositeStructures,TsinghuaUniversity,Beijing100084,China
ARTICLEINFO
ABSTRACT
Keywords:
Designingbuildingstructurespresentsvariouschallenges,includinginefficientdesignprocesses,limiteddata
Buildingstructuraldesign
reuse,andtheunderutilizationofpreviousdesignexperience.Generativeartificialintelligence(AI)hasemerged
Datafeaturerepresentation
GenerativeAIalgorithm
Designevaluation
Intelligentoptimization
asapowerfultoolforlearningandcreativelyusingexistingdatatogeneratenewdesignideas.Learningfrompastexperiences,thistechniquecananalyzecomplexstructuraldrawings,combinerequirementtexts,integratemechanicalandempiricalknowledge,andcreatefreshdesigns.Inthispaper,acomprehensivereviewofrecentresearchandapplicationsofgenerativeAIinbuildingstructuraldesignisprovided.Thefocusisonhowdataisrepresented,howintelligentgenerationalgorithmsareconstructed,methodsforevaluatingdesigns,andtheintegrationofgenerationandoptimization.ThisreviewrevealsthesignificantprogressgenerativeAIhasmadeinbuildingstructuraldesign,whilealsohighlightingthekeychallengesandprospects.Thegoalistoprovideareferencethatcanhelpguidethetransitiontowardsmoreintelligentdesignprocesses.
1.Introduction
Thedesignofbuildingstructuresisanuancedtaskthatnecessitatestheblendingofempiricalandmechanicalknowledge.Engineershavebeenconsistentlydiscovering,developing,andimplementingsophisti-catedcomputer-aideddesigntechnologiestostreamlinetheprocessandtargetefficientandreliablestructuraldesigns.
Inthe1980s,intelligentdesignmethodswereproposedbasedonexpertsystemalgorithms[
62
].Inthefollowingyears,aseriesofintel-ligentdesignmethodsbasedonbiologicallyinspiredalgorithmsemergedtogetherwiththeconceptofgenerativedesign[
80
,97
,
102
].Advancementsincomputertechnologydrovethedigitizationandautomationofbuildingstructuraldesignsforwardatanunprecedentedpace.However,expertsystemalgorithmsandbiologicallyinspiredal-gorithmsfindthemselvesgrapplingwithissuesindatalearning,designruleencoding,anddesignefficiency,whichhampertheirwiderapplication.
Inrecentyears,artificialintelligence(AI)technologies,notablydeeplearning,havemaderemarkableprogressinlearningfromexistingdataandgeneratingnewdesigns,whichsetsthemapartfromconventionalexpertsystemsandbiologicallyinspiredalgorithms.GenerativeAIdesign,whichharnessesmachinelearningalgorithmstolearnfromdataandunfoldsnewcontent,hasbeenidentifiedasoneofthetoptentechnologytrendsfor2023[
12
].Intelligentgenerativetechnologies,
suchasDALL-E[
8
]andChatGPTbyOpenAIandAlphaFoldbyDeep-Mind[
41
],havedemonstratedtheversatilityofgenerativeAIinvariousfieldsandhavebecomeacutting-edgeareaofresearch.
Buildingstructuraldesignsrelyprimarilyondrawingsthattranslateintostructuredorimagedata.Engineerscompletethedesignprocessbasedonanarchitecturaldesignwithmultipleconstraintssuchascomplianceandeconomy.Theend-to-enddesignprocessofgenerativeAIisconsistentwiththatofbuildingstructuraldesignbyengineers[
104
],equippedwithpowerfullearningandgeneratingcapabilitiestotackletheintricatepuzzlesofintelligentdesign.Therefore,ithasbecomeanewresearchtopic.
SeveralcomprehensivereviewshavebeenundertakentoexploretherecentadvancementsinintelligenttechnologiesbasedonAIinbuildingstructuraldesign,analysis,construction,andmaintenance(
Table1
).ThesereviewscontributesignificantlytotheunderstandingofvariousAItechnologies,includingmachinelearning,deeplearning,GenerativeAdversarialNetworks(GANs),GenerativePre-trainedTransformer(GPT)models,andGraphNeuralNetworks(GNNs).Bydelvingintothesetopics,thesereviewsshedlightonthepotentialapplicationsandbenefitsoftheseAItechnologiesinbuildingstructures.
Intherealmofdesignandanalysis,severalnotablereviewstudieshavebeenconducted.AldwaikandAdeli
[59
]conductedareviewfocusingontheoptimizationofhigh-risebuildingstructures,utilizingnature-basedoptimizationapproachesliketheneuraldynamicsmodel
*Correspondingauthor.
E-mailaddress:
luxz@
(X.Lu).
/10.1016/j.autcon.2023.105187
Received11June2023;Receivedinrevisedform15October2023;Accepted5November2023
Availableonline11November2023
0926-5805/©2023ElsevierB.V.Allrightsreserved.
2
W.Liaoetal.
Table1
ScopesofexistingreviewstudiesrelatedtoAI-assistantbuildingstructuraldesign.
Dsgn.
Anlys.
C&O&M
DL
(inc.
Gen.
AI)
ML
Optim.
DRL
Aldwaik&
Adeli[
59
]Chietal.
[37
]Amezquita-
Sanchez
etal.[
49
]
LiandAdeli
[
120
]
Afzaletal.
[
58
]
Sunetal.
[35
]Pizarroetal.
[
77
]
Badugeetal.
[
95
]
Wuetal.[
11
]Zakian&
Kaveh[
69
]Yükseletal.
[
65
]
Wangetal.
[
19
]
Omranyetal.
[
34
]
Sakaetal.
[9
]Jiaetal.
[110
]Topuz&
ÇakiciAlp
[
14
]
Koetal.[
42
]Ours
√
√
√
√
√
√
√
√
√
√
√
√
√
√
√
√
√
√
√
√
√
√
√
√
√
√
√
√
√
√
√
√
√
√
√
√
√
√
√
√
√
√
√
√
√
√
√
√
√
√
√
√
√
√
√
√
√
√
√
√
√
√
√
√
√
√
Dsgn.=Design,Anlys.=Analysis,C&O&M=Construction&Operations&Maintenance,DL=DeepLearning,Gen.AI=GenerativeAI,ML=MachineLearning,Optim.=Optimization,andDRL=DeepReinforcementLearning.
andgeneticalgorithms.Chietal.[
37
]andOmranyetal.[
34
]exploredtheintegrationofbuildinginformationmodeling(BIM)withsmarttechnologiesinstructuraldesignpractice,suchasstructuraldesign,planning,analysis,andoptimization.Afzaletal.[
58
]providedanoverviewofstructuralcomponents,optimizationstrategies,andtheutilizationofvariouscomputationaltoolsinRCstructuraldesignopti-mization.Pizarroetal.
[77
]reviewedrule-andlearning-basedmethodsforintelligentrecognitionanddesigninarchitecture.Sunetal.
[35
]delvedintotheresearchonmachinelearningapplicationsinbuildingstructuredesignandperformanceevaluation.ZakianandKaveh[
69
]presentedanoverviewofseismicdesignoptimization,encompassingcommonsolutionmethods,optimizationproblemtypes,andoptimiza-tiongoals.Yükseletal.
[65
]analyzedtheresearchstatusofgenetical-gorithms,fuzzylogic,andmachinelearningmethodsinengineeringstructuredesign,coveringareassuchasdesigngeneration,evaluation,optimization,decision-making,andmodeling.Wangetal.[
19
]con-ductedareviewspecificallyontheapplicationofAItechnologyinmaterialandstructuralanalyseswithinthefieldofcivilengineering.TopuzandÇakiciAlp
[14
]evaluatedthecurrentstateofmachinelearningincomputer-aideddesign,engineering,andmanufacturingofarchitecture.Lastly,Koetal.
[42
]introducedadvancementsinauto-matedspatiallayoutplanningcombinedwithAI.
SeveralreviewstudiesalsoexploredAIapplicationsintherealmofconstructionandmaintenance.Amezquita-Sanchezetal.[
49
],andLiandAdeli[
120
]providedaninsightfulreviewandoutlookontheuti-lizationofmachinelearningtechnologiesinstructuralsystemidentifi-cation,healthmonitoring,vibrationcontrol,design,andoptimization.Badugeetal.[
95
]introducedthelatestadvancementsinapplyingAItechnologies,includingmachinelearninganddeeplearning,inbuilding
AutomationinConstruction157(2024)105187
designandvisualizationwithinthecontextofthebuildingindustry4.0.Wuetal.[
11
]presentedacomprehensivestate-of-the-artreviewontheutilizationofGANstotacklechallengingtasksinthebuiltenvironment.Sakaetal.[
9
]assessedthepotentialofGPTmodelsintheconstructionindustry,identifyingopportunitiesfortheirimplementationthroughouttheprojectlifecycle.Jiaetal.
[110
]exploreddiverseapproachesforconstructinggraphdatafromcommonconstructiondatatypesandhighlightedthesignificantpotentialofGNNsfortheconstructionindustry.
However,thereisanoticeablegapintheanalysisanddiscussionsurroundingthedevelopmentandapplicationofgenerativeAIinthestructuraldesignofbuildings.Thisgapresultsinalackofsystematicandtargetedresearchwithinthisfield.Uponreviewingexistingstudies,itbecomesevidentthattheresearchfindingsinthisareaarefragmentedandincomplete.Researchersencounterchallengesinaddressingspecificissues,whiletheentrybarriersfornewresearchersenteringthisfieldareontherise.ThesefactorscollectivelyimpedefurtherprogressandhindertheadvancementofgenerativeAIinbuildingstructuraldesign.Therefore,thisstudyaimstoprovideanoverviewofexistingintelligentstructuraldesignmethodsandfocusesontheachievementsandappli-cationsofgenerativeAIinbuildingstructuraldesign,whichhasun-dergonerapiddevelopmentoverthepastthreeyears.TheanalysisofexistingstudiesrevealsthattheprimaryresearchareasingenerativeAI-basedstructuraldesignencompassdatarepresentation,generational-gorithms,evaluationmethods,andtheintegrationofAIgenerationwithdesignoptimization.Byconductinginvestigationsinthesepertinentdomains,theadvancementofAI-basedbuildingstructuraldesigntech-nologycanbeeffectivelyfacilitated.Accordingly,thisstudywillpre-dominantlycenteraroundshowcasingtheaccomplishmentsofexistingresearchwithinthesespecificareas.
Section2
providesamacro-introductiontocurrentAImethodsandtheirapplicationsinbuildingstructuraldesign.
Sections3–5
reviewthedatafeaturerepresentation,generativealgorithmconstruction,andevaluationmethodsingenerativeAI.
Section6
introducesmethodscouplingintelligentgenerationandoptimization,andSection7presentstypicalengineeringapplicationcasesofintelligentbuildingstructuredesign.
Section8
providesrelevantconclusionsandprospectsforthefuturedevelopmentofthisresearchfield.
Consequently,thisstudyhighlightsthepotentialofgenerativeAIinbuildingstructuraldesignandtheneedforfurtherresearchinthisfield.ThedevelopmentandapplicationofgenerativeAIinstructuraldesigncansignificantlyenhancetheefficiencyandaccuracyofthedesignprocess,leadingtomoresustainableandsaferbuildingstructures.
2.Introductiontoartificialintelligence(AI)methodsandapplicationsinbuildingstructuraldesign
2.1.AImethods
ResearchonAImethodshasbeenconductedforaconsiderableperiod.Inthisstudy,thetimelinewaspartitionedusing2012asareferencepoint,whichmarksthe“deeplearningera”owingtothehighlyeffectiveimageclassificationalgorithmAlexNet[
4
].AccordingtoYükseletal.[
65
],asillustratedin
Fig.1
,mostAImethodsbefore2012werecategorizedasclassicalAImethods,whereasthoseafter2012werereferredtoasmodernAImethods.Thisreviewfocusesprimarilyondeep-learningalgorithmsdevelopedafter2012.
(1)ClassicalAImethods
Representativemethodsincludeknowledge-basedsystemsandbio-logicallyinspiredalgorithms.Knowledge-basedsystemsincludeexpertsystems[
23
],fuzzylogic[
48
],andgenerativedesigngrammars[
1
].Biologicallyinspiredalgorithmsincludegeneticalgorithms[
31
],parti-cleswarmoptimization[
84
],andcellularautomata[
25
].
3
100%
0%
W.Liaoetal.
AutomationinConstruction157(2024)105187
Artificialintelligence(Al)
classicalAl
earnngM)
DeepeargD
Artifcialneura
convolutional
neura
networks
(CNN)
cellularautomata(CA)
Differentialevolution
algorithm(DEA)
particleswarm
ptimization(pso)FuzzYlogic
Recurrent
neura
networks
(RNN/LSTM)
BiologicaIIY-inspired
algorithms
Graph
neura
networks
(GNN)
knowledge-based
systems
Geneticalgorithm
network(ANN)
Expertsystem
ModernA
Machinel
GA
Fig.1.Artificialintelligence(AI)methodswidelyadoptedinbuildingstructuraldesign.
(2)ModernAImethods
advancementshaveprovidedengineerswithenhancedinitialdesignsolutions,elevatingbothdesignefficiencyandquality.Theinsightsfrom
Since2012,theAIfieldhasundergoneacomprehensivedevelop-mentdrivenbydeeplearning,whichcanhandlebigdata,extracthigh-dimensionalfeatures,andsignificantlyimprovelearningfromdata[
111
].Typicaldeeplearningmethodsincludedeepconvolutionalneuralnetworks(CNNs)[
4
,
111
],deepgraphneuralnetworks(GNNs)[
99
],anddeeprecurrentneuralnetwork/longshort-termmemory(RNN/LSTM)[
40
,
90
].Inaddition,advanceddeeplearningalgorithmshavebeendevelopedusingthesemethods,suchasthevariationalautoencoder(VAE)
[24
],generativeadversarialnetwork(GAN)[
38
],transformer[
10
],anddiffusionmodels
[28
].Inrecentyears,generativeAI[
10
,
28
,
38
,
96
]hasbecomearepresentativetechnologicaladvancementindeeplearningresearch.TheemergenceofgenerativeAIordeepgenerativemethodshasopenednewpossibilitiesforintelligentdesign. Presently,modernAImethodshavefoundextensiveapplicationsinvariousengineeringfields,includingarchitecture,mechanicalengi-neering,andaerospaceengineering
[65
].Theyhaveproventobeeffectiveingeneratingarchitecturallayouts,renderingarchitecturalimages[
27
,39
,
56
,57
,63
,
64
,79
,89
,
101,107
],generatingwheelstruc-tures[
92
],andaerodynamicshapesofaircraft[
22
].These
theserelatedstudiesserveascrucialreferencesforthedevelopmentofgenerativeAI-basedintelligentdesigninbuildingstructures.
2.2.ApplicationofAIinbuildingstructuraldesign
Thebuildingstructuraldesignprocesscanbedividedintothreeprimarystages:conceptualdesign(schemedesign),detaileddesign(preliminaryoroptimizationdesign),andconstructiondrawingdesign.Amongthesestages,theconceptualdesignstagesignificantlyimpactsthefinaldesignoutcomeandreliesheavilyondesignexperienceandknowledge(asshownin
Fig.2
).Therefore,intheconceptualdesignstage,AIplaysasignificantroleinthestructuraldesignofbuildings.
Thecoretaskofaconceptualbuildingstructuraldesignisdesigngeneration(alsoknownassynthesis).AccordingtoMaher[
62
],buildingstructuraldesignsynthesismethodsmainlyrefertothegenerationofcorrespondingdesignsguidedbyspecificknowledgefragments,suchasheuristicrulesanddescriptiveframeworks.Inaddition,withthedevelopmentandapplicationofgenerativeAItechnologiesthatcanlearndatafeaturesandgeneratenewdesigns,currentstructuraldesign
Highinfluence
Lowinfluence
Lowexpenditure
Highexpenditure
Result
conceptual
Design
precttime
construction
drawing
design
Fig.2.Influenceofthebuildingstructuraldesignphaseonprojectcost[
15
].
pg(pxg)(x)
GeGneaetreaedaataSaSmapmlepdleaata
pdatpad(atxa)(x)
4
W.Liaoetal.
synthesismethodsmainlyincludeheuristicsearch-based,descriptivegrowth-based,andgenerativeAIlearning-baseddesigns(
Table2
).
Heuristicsearch-baseddesignsprimarilyusebiologicallyinspiredcomputationtechniques,suchasgeneticalgorithms,particleswarmoptimization,andcellularautomata[
2
,
5-7
,
33
,
43-45
,
54
,
61
,80
,
88
,
91
,
93
,
112
,
119
].Descriptivegrowth-baseddesignsprimarilyusegenerativedesigngrammar[
1
,
16
,
26
,53
,
87
,
108
].Theseintelligentdesignmethodshavebeenwidelyappliedinmultipleareasofbuildingstructuraldesign,suchasmulti-schemesearch,comparativeselection,andmaterialoptimization,andhavepromotedtheprogressofdigitali-zationandautomationinstructuraldesign.However,theseclassicalmethodsfacedifficultiesregardingdatalearninganddesignefficiency.Incontrast,generativelearningisanintelligentdesignmethoddomi-natedbygenerativeAI,whichhaspowerfuldesigndatalearningandefficientnewdesigngenerationcapabilitiesandhasbeencontinuouslydevelopingandadvancinginrecentyears.
ThemainarchitectureofthegenerativeAIalgorithmsisshownin
Fig.3
,whichincludesadataset,aneuralnetworkmodel,andalossfunctionmodule.ThedevelopmentandapplicationofgenerativeAIinbuildingstructuraldesignwillmainlyfocusonthesethreeparts,andadetailedanalysisandsummaryarepresentedin
Sections3-5
.
Tofurtherunderstandthecurrentstateofresearchonintelligentstructuraldesign,weconductedasearchoftheWebofScienceCoreCollectionforrelevantpapers.First,asearchwasconductedonAI-basedstructuraldesignmethods,yielding188searchresults.Subsequently,searcheswereconductedonclassicalAI-basedandmodernAI-basedstructuraldesignmethods,resultingin130and74searchresults,respectively.Thesearchformulaearelistedin
Table3
.
Fig.4
(a)showsthechangeinthenumberofresearchpapersonAI-basedbuildingstructuraldesigns,indicatingacontinuousincreaseinintelligentdesignresearchovertheyears,withasignificantincreasesince2020.BycomparingtheclassicalandmodernAImethods,asshownin
Fig.4
(b),itcanbeobservedthatclassicalAIwasthemain-streamresearchmethodforintelligentdesignbefore2012.Since2012,modernAIhasrapidlydeveloped,andtherelatedresearchpapershaveincreasedthreefold;however,somedifferencesstillexistcomparedtoclassicalAImethods.Since2020,generativeAItechnologyhassignifi-cantlyimproveditscapabilitiesandhasbeendevelopingin-depthinthefieldofstructuraldesign,withresearchpapersonparwithclassicalAI
AutomationinConstruction157(2024)105187
methodsandaccountingfor48%ofthetotalresearch,showingatrendofsurpassingclassicalAImethods.
Insummary,byanalyzingtherecenttrendsinintelligentbuildingstructuraldesign,AI-basedmethodsusingdeeplearninghavegraduallybecometheprimaryresearchfocus.Thesemethodsarereferredtobydifferentnames,includingintelligentgenerativedesign,deepgenerativedesign,intelligentdesign,anddeep-learning-baseddesign.However,thecoretechnologyofthesemethodsprimarilyinvolveslearningfromexistingdesigndata,empiricalknowledge,andphysicalprinciplestomastertheabilitytogeneratenewdesignsintelligently.AsthisisconsistentwiththeessenceofgenerativeAI,thisstudycollectivelyreferstothesemethodsasgenerativeAI-basedintelligentdesignsforbuildingstructures.
3.Datafeaturerepresentationanddatasetconstruction
Therepresentationofthedatafeaturesiscrucialinbuildingstruc-turalintelligentdesign.Thisrepresentationisrelatedtothegeometricandmechanicalcharacteristicsofthestructuraldesignandissubjecttothelimitationsofdeep-learningalgorithms.Inbuildingstructuraldesign,datafeaturesmainlyincludetopological,pattern,andsizefea-tures.Topologicalfeaturesrefertothelayoutofstructuralcomponentsinspaceandtheconnectionrelationshipbetweencomponentstoeffectivelyresistoveralllateralandverticalloads.Patternfeaturesrefertothelocalgeometricconfigurationofcomponentsthatmustbeinspecialpatterns(suchasL-shaped,T-shaped,andC-shaped)toresisttheloadofthelocalcomponent.Sizefeaturesrefertothecross-sectionalsizesofstructuralcomponents.
GenerativeAIalgorithmsutilizeconvolutionalneuralnetworks(CNNs)toprocessdataastensors(including1-dimensionalvectors,3-dimensionalimages,andn-dimensionalmatrices).Incontrast,graphneuralnetworks(GNNs)aresuitableforprocessingdataingraphs(nodeandedgerepresentations,with1-dimensionalvectorfeaturesembeddedinnodesandedges).Tensordatacanbetterexpresspatternsandsizefeaturesinthedesign,whereasgraphsaremoreconducivetoexpressingtopologicalfeatures.
Therefore,generativeAIalgorithmscaneffectivelyextractfeaturesandlearnbyappropriatelyrepresentingthedatafeaturesinbuildingstructuraldesign.Thissectionreviewsthedatafeaturerepresentation
Table2
Comparisonofthreemainstreamintelligentdesignmodes.
Heuristicsearch-basedDescriptivegrowth-basedGenerativeAIlearning-based
Concept
description
Concept
illustration
Utilizingtheprovidedinitialsolutionwithinpredeterminedboundaryconstraints,the
iterativeprocessaimstosystematicallysearchfortheoptimalresult.
Theprocessinvolvesestablishinggenerationrulesandconstraints,commencingfromtheinitial
design,andsubsequentlyiterativelyoptimizingitbasedonthedescriptivegenerationrules.
Byleveragingexistingdata,AIcomprehendsthe
mappingpatternsbetweenbuildingandstructure.
TrainedAIgeneratesacorrespondingstructuraldesignforanewbuildingdesigninasinglecomprehensive
step.
Representative
methods
Geneticalgorithms
Generativedesigngrammar
GAN
Initialstructuraldesign
Required
Partialrequired
Notrequired
Manually
definedrules
Required
Required
Partialrequired
Iterationdesign
Required
Required
Notrequired
Learning
Notrequired
Notrequired
Required
Performance
High
Relativelyhigh
Medium
Efficiency
Relativelylow
Medium
High
5
Input
output
physical
constraint
Dataloss
W.Liaoetal.
AutomationinConstruction157(2024)105187
Datasets
Neuralnetwork
Evaluation
Groundtruthdata
embeddedphysicallaws
andempiricalrules
Discriminator
Rea
Fake
Generativeneuralnetwork
Fig.3.AlgorithmframeworkofgenerativeAI.
Table3
SearchobjectsandformulasusedintheWebofSciencecorecollectionandtheresultingnumber(accessedonApril20,2023).
Searchobjects
Searchformulas
Numberof
studies
ClassicalAI-based
buildingstructuraldesign
(TS=(“building”OR“architecture*”)
ANDTS=(“structur*design”)ANDTS=
(“intelligen*”OR“automat*”OR
“artificialintelligence”OR“design
intelligence”OR“generative”OR
“optimiz*”OR“explorat*”)ANDTS= (“expertsystem*”OR“fuzzylogic”OR“geneticalgorithm”OR“generative
grammar”OR“evolution”OR“particleswarmoptimization”OR“cellular
automata”))
(TS=(“building”OR“architecture*”)
ANDTS=(“structur*design”)ANDTS=(“intelligen*”OR“automat*”OR
“artificialintelligence”OR“design
130
ModernAI-based
buildingstructuraldesign
intelligence”OR“generative”OR
“optimiz*”OR“explorat*”)ANDTS=
(“machinelearning”OR“deeplearning”
OR“neuralnetwork”OR“generativeadversarialnetwork”OR“variational
74
AI-basedbuildingstructuraldesign
autoencoder”OR“transformer”OR“diffusionmodel”))
Thesumofthesetwoformulas
188
methodsanddatasetconstructionusedinexistingresearch.
3.1.Datafeaturerepresentation
Table4-1
and
Table4-2
summarizethetensor-basedandgraph-baseddatarepresentationmethodsusedinrelatedresearch,and
Fig.5
illustratesthetypicalrepresentationmethods.Tensor-baseddatarep-resentationismorecommonlyusedincurrentresearch,whereasgraph-basedrepresentationsarelesscommon.Tensorrepresentationismoreintuitiveandstraightforward,andthusitismorewidelyusedincurrentgenerativeAI-basedintelligentdesignmethods.Althoughgraphsarebettersuitedforexpressingtopologicalfeatures,theyrequirecomplexandsophisticateddesignstorepresentpatternandsizefeatures.
(1)Tensor-basedrepresentation
(2)Graph-basedrepresentation
3.2.Datasetconstruction
Afterdeterminingthedatafeaturerepresentationmethod,thecollecteddatawereprocessedtoconstructthedataset.
Table5
providesdetailedinformationonthedatasetsdescribedinthecurrentliterature,includingthedesignobject,datacontent,dataquantity,andwhethertheyareopensource.Currently,theconstructionofdatasetsinbuildingstructuralintelligentdesignisrelativelyscarce,andtheintroductionofdatasetsisnotsufficientlycomprehensive.Onesignificantreasonisthelimitedavailabilityofpubliclyaccessiblefielddata.
Dataaugmentationmethodsarewidelyusedtoaddresstheissueoflimiteddata.(1)Imagedataaugmentationmethods,suchasflipping,symmetry,andtranslationofimages,caneffectivelyincreasethedatauptofourtimestheoriginaldatawithoutchangingtheattributesofthestructuraldesign[
13
,
104
].Augmentingdatathroughoverallimagesegmentationcanincreasethedatabyhundredsoftimesbypartitioningthecompleteddesignimageintoseverallocaldesignimageswithoutchangingthebuildingandstructuralsize
[71
,76
].(2)Tensordataaugmentationcangeneratehundredsorthousandsofdatabyparametricdesignforstructuraltopologyandcomponentsize[
30
,46
,72
].(3)Graphdataaugmentationcanalsobeperformedbasedonthespatialrelativecoordinatepositionineachnodeofthegraph,wheredatacanbeaugmented>3000timesbyoveralltranslation,flipping,androtatingcoordinates[
70
,74
].
3.3.Summaryofdatafeaturerepresentation
Currently,thereexistsignificantvariationsintheextractionandrepresentationofdatafeaturesfordifferentbuildingstructureforms.Whetheritinvolvespixel
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 湖北省襄阳市樊城区太平店镇2025届九年级化学第一学期期末调研试题含解析
- 企业客服质量管理手册
- 甘肃林业职业技术学院《常用医疗器械原理》2023-2024学年第一学期期末试卷
- 2025届河北省石家庄市第四十中学九上化学期末综合测试试题含解析
- 滨州学院《实验室生物安全培训》2023-2024学年第一学期期末试卷
- 吉林铁道职业技术学院《数据可视化方法》2023-2024学年第一学期期末试卷
- 江苏省常熟市第三中学2024年数学七上期末考试试题含解析
- 浙江省余姚市2024-2025学年九上化学期末综合测试试题含解析
- 重庆城市管理职业学院《试验设计与统计理论基础》2023-2024学年第一学期期末试卷
- 山西艺术职业学院《新闻学概论》2023-2024学年第一学期期末试卷
- 中华人民共和国民营经济促进法
- 小学STEM教育中的创新实验室建设
- YY/T 0882-2013麻醉和呼吸设备与氧气的兼容性
- JJG 596-2012电子式交流电能表
- GB/T 6109.1-2008漆包圆绕组线第1部分:一般规定
- GB/T 20721-2006自动导引车通用技术条件
- GB/T 18948-2017内燃机冷却系统用橡胶软管和纯胶管规范
- 制药有限公司职业卫生管理制度
- 2022年高校教师资格证考试题库高分通关300题a4版(浙江省专用)
- 上海国有土地上房屋征收补偿协议上海住房和城乡建设管理委员会
- 工程项目“三标一体”管理标准实施细则
评论
0/150
提交评论