版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
checkfor
updates
AutomationinConstruction157(2024)105187
Contentslistsavailableat
ScienceDirect
AutomationinConstruction
journalhomepage:
/locate/autcon
Review
GenerativeAIdesignforbuildingstructures
WenjieLiao
aXinzhengLua,,
*,YifanFei
b,YiGub,YuliHuang
a
aKeyLaboratoryofCivilEngineeringSafetyandDurabilityofMinistryofEducation,TsinghuaUniversity,Beijing100084,China
bBeijingEngineeringResearchCenterofSteelandConcreteCompositeStructures,TsinghuaUniversity,Beijing100084,China
ARTICLEINFO
ABSTRACT
Keywords:
Designingbuildingstructurespresentsvariouschallenges,includinginefficientdesignprocesses,limiteddata
Buildingstructuraldesign
reuse,andtheunderutilizationofpreviousdesignexperience.Generativeartificialintelligence(AI)hasemerged
Datafeaturerepresentation
GenerativeAIalgorithm
Designevaluation
Intelligentoptimization
asapowerfultoolforlearningandcreativelyusingexistingdatatogeneratenewdesignideas.Learningfrompastexperiences,thistechniquecananalyzecomplexstructuraldrawings,combinerequirementtexts,integratemechanicalandempiricalknowledge,andcreatefreshdesigns.Inthispaper,acomprehensivereviewofrecentresearchandapplicationsofgenerativeAIinbuildingstructuraldesignisprovided.Thefocusisonhowdataisrepresented,howintelligentgenerationalgorithmsareconstructed,methodsforevaluatingdesigns,andtheintegrationofgenerationandoptimization.ThisreviewrevealsthesignificantprogressgenerativeAIhasmadeinbuildingstructuraldesign,whilealsohighlightingthekeychallengesandprospects.Thegoalistoprovideareferencethatcanhelpguidethetransitiontowardsmoreintelligentdesignprocesses.
1.Introduction
Thedesignofbuildingstructuresisanuancedtaskthatnecessitatestheblendingofempiricalandmechanicalknowledge.Engineershavebeenconsistentlydiscovering,developing,andimplementingsophisti-catedcomputer-aideddesigntechnologiestostreamlinetheprocessandtargetefficientandreliablestructuraldesigns.
Inthe1980s,intelligentdesignmethodswereproposedbasedonexpertsystemalgorithms[
62
].Inthefollowingyears,aseriesofintel-ligentdesignmethodsbasedonbiologicallyinspiredalgorithmsemergedtogetherwiththeconceptofgenerativedesign[
80
,97
,
102
].Advancementsincomputertechnologydrovethedigitizationandautomationofbuildingstructuraldesignsforwardatanunprecedentedpace.However,expertsystemalgorithmsandbiologicallyinspiredal-gorithmsfindthemselvesgrapplingwithissuesindatalearning,designruleencoding,anddesignefficiency,whichhampertheirwiderapplication.
Inrecentyears,artificialintelligence(AI)technologies,notablydeeplearning,havemaderemarkableprogressinlearningfromexistingdataandgeneratingnewdesigns,whichsetsthemapartfromconventionalexpertsystemsandbiologicallyinspiredalgorithms.GenerativeAIdesign,whichharnessesmachinelearningalgorithmstolearnfromdataandunfoldsnewcontent,hasbeenidentifiedasoneofthetoptentechnologytrendsfor2023[
12
].Intelligentgenerativetechnologies,
suchasDALL-E[
8
]andChatGPTbyOpenAIandAlphaFoldbyDeep-Mind[
41
],havedemonstratedtheversatilityofgenerativeAIinvariousfieldsandhavebecomeacutting-edgeareaofresearch.
Buildingstructuraldesignsrelyprimarilyondrawingsthattranslateintostructuredorimagedata.Engineerscompletethedesignprocessbasedonanarchitecturaldesignwithmultipleconstraintssuchascomplianceandeconomy.Theend-to-enddesignprocessofgenerativeAIisconsistentwiththatofbuildingstructuraldesignbyengineers[
104
],equippedwithpowerfullearningandgeneratingcapabilitiestotackletheintricatepuzzlesofintelligentdesign.Therefore,ithasbecomeanewresearchtopic.
SeveralcomprehensivereviewshavebeenundertakentoexploretherecentadvancementsinintelligenttechnologiesbasedonAIinbuildingstructuraldesign,analysis,construction,andmaintenance(
Table1
).ThesereviewscontributesignificantlytotheunderstandingofvariousAItechnologies,includingmachinelearning,deeplearning,GenerativeAdversarialNetworks(GANs),GenerativePre-trainedTransformer(GPT)models,andGraphNeuralNetworks(GNNs).Bydelvingintothesetopics,thesereviewsshedlightonthepotentialapplicationsandbenefitsoftheseAItechnologiesinbuildingstructures.
Intherealmofdesignandanalysis,severalnotablereviewstudieshavebeenconducted.AldwaikandAdeli
[59
]conductedareviewfocusingontheoptimizationofhigh-risebuildingstructures,utilizingnature-basedoptimizationapproachesliketheneuraldynamicsmodel
*Correspondingauthor.
E-mailaddress:
luxz@
(X.Lu).
/10.1016/j.autcon.2023.105187
Received11June2023;Receivedinrevisedform15October2023;Accepted5November2023
Availableonline11November2023
0926-5805/©2023ElsevierB.V.Allrightsreserved.
2
W.Liaoetal.
Table1
ScopesofexistingreviewstudiesrelatedtoAI-assistantbuildingstructuraldesign.
Dsgn.
Anlys.
C&O&M
DL
(inc.
Gen.
AI)
ML
Optim.
DRL
Aldwaik&
Adeli[
59
]Chietal.
[37
]Amezquita-
Sanchez
etal.[
49
]
LiandAdeli
[
120
]
Afzaletal.
[
58
]
Sunetal.
[35
]Pizarroetal.
[
77
]
Badugeetal.
[
95
]
Wuetal.[
11
]Zakian&
Kaveh[
69
]Yükseletal.
[
65
]
Wangetal.
[
19
]
Omranyetal.
[
34
]
Sakaetal.
[9
]Jiaetal.
[110
]Topuz&
ÇakiciAlp
[
14
]
Koetal.[
42
]Ours
√
√
√
√
√
√
√
√
√
√
√
√
√
√
√
√
√
√
√
√
√
√
√
√
√
√
√
√
√
√
√
√
√
√
√
√
√
√
√
√
√
√
√
√
√
√
√
√
√
√
√
√
√
√
√
√
√
√
√
√
√
√
√
√
√
√
Dsgn.=Design,Anlys.=Analysis,C&O&M=Construction&Operations&Maintenance,DL=DeepLearning,Gen.AI=GenerativeAI,ML=MachineLearning,Optim.=Optimization,andDRL=DeepReinforcementLearning.
andgeneticalgorithms.Chietal.[
37
]andOmranyetal.[
34
]exploredtheintegrationofbuildinginformationmodeling(BIM)withsmarttechnologiesinstructuraldesignpractice,suchasstructuraldesign,planning,analysis,andoptimization.Afzaletal.[
58
]providedanoverviewofstructuralcomponents,optimizationstrategies,andtheutilizationofvariouscomputationaltoolsinRCstructuraldesignopti-mization.Pizarroetal.
[77
]reviewedrule-andlearning-basedmethodsforintelligentrecognitionanddesigninarchitecture.Sunetal.
[35
]delvedintotheresearchonmachinelearningapplicationsinbuildingstructuredesignandperformanceevaluation.ZakianandKaveh[
69
]presentedanoverviewofseismicdesignoptimization,encompassingcommonsolutionmethods,optimizationproblemtypes,andoptimiza-tiongoals.Yükseletal.
[65
]analyzedtheresearchstatusofgenetical-gorithms,fuzzylogic,andmachinelearningmethodsinengineeringstructuredesign,coveringareassuchasdesigngeneration,evaluation,optimization,decision-making,andmodeling.Wangetal.[
19
]con-ductedareviewspecificallyontheapplicationofAItechnologyinmaterialandstructuralanalyseswithinthefieldofcivilengineering.TopuzandÇakiciAlp
[14
]evaluatedthecurrentstateofmachinelearningincomputer-aideddesign,engineering,andmanufacturingofarchitecture.Lastly,Koetal.
[42
]introducedadvancementsinauto-matedspatiallayoutplanningcombinedwithAI.
SeveralreviewstudiesalsoexploredAIapplicationsintherealmofconstructionandmaintenance.Amezquita-Sanchezetal.[
49
],andLiandAdeli[
120
]providedaninsightfulreviewandoutlookontheuti-lizationofmachinelearningtechnologiesinstructuralsystemidentifi-cation,healthmonitoring,vibrationcontrol,design,andoptimization.Badugeetal.[
95
]introducedthelatestadvancementsinapplyingAItechnologies,includingmachinelearninganddeeplearning,inbuilding
AutomationinConstruction157(2024)105187
designandvisualizationwithinthecontextofthebuildingindustry4.0.Wuetal.[
11
]presentedacomprehensivestate-of-the-artreviewontheutilizationofGANstotacklechallengingtasksinthebuiltenvironment.Sakaetal.[
9
]assessedthepotentialofGPTmodelsintheconstructionindustry,identifyingopportunitiesfortheirimplementationthroughouttheprojectlifecycle.Jiaetal.
[110
]exploreddiverseapproachesforconstructinggraphdatafromcommonconstructiondatatypesandhighlightedthesignificantpotentialofGNNsfortheconstructionindustry.
However,thereisanoticeablegapintheanalysisanddiscussionsurroundingthedevelopmentandapplicationofgenerativeAIinthestructuraldesignofbuildings.Thisgapresultsinalackofsystematicandtargetedresearchwithinthisfield.Uponreviewingexistingstudies,itbecomesevidentthattheresearchfindingsinthisareaarefragmentedandincomplete.Researchersencounterchallengesinaddressingspecificissues,whiletheentrybarriersfornewresearchersenteringthisfieldareontherise.ThesefactorscollectivelyimpedefurtherprogressandhindertheadvancementofgenerativeAIinbuildingstructuraldesign.Therefore,thisstudyaimstoprovideanoverviewofexistingintelligentstructuraldesignmethodsandfocusesontheachievementsandappli-cationsofgenerativeAIinbuildingstructuraldesign,whichhasun-dergonerapiddevelopmentoverthepastthreeyears.TheanalysisofexistingstudiesrevealsthattheprimaryresearchareasingenerativeAI-basedstructuraldesignencompassdatarepresentation,generational-gorithms,evaluationmethods,andtheintegrationofAIgenerationwithdesignoptimization.Byconductinginvestigationsinthesepertinentdomains,theadvancementofAI-basedbuildingstructuraldesigntech-nologycanbeeffectivelyfacilitated.Accordingly,thisstudywillpre-dominantlycenteraroundshowcasingtheaccomplishmentsofexistingresearchwithinthesespecificareas.
Section2
providesamacro-introductiontocurrentAImethodsandtheirapplicationsinbuildingstructuraldesign.
Sections3–5
reviewthedatafeaturerepresentation,generativealgorithmconstruction,andevaluationmethodsingenerativeAI.
Section6
introducesmethodscouplingintelligentgenerationandoptimization,andSection7presentstypicalengineeringapplicationcasesofintelligentbuildingstructuredesign.
Section8
providesrelevantconclusionsandprospectsforthefuturedevelopmentofthisresearchfield.
Consequently,thisstudyhighlightsthepotentialofgenerativeAIinbuildingstructuraldesignandtheneedforfurtherresearchinthisfield.ThedevelopmentandapplicationofgenerativeAIinstructuraldesigncansignificantlyenhancetheefficiencyandaccuracyofthedesignprocess,leadingtomoresustainableandsaferbuildingstructures.
2.Introductiontoartificialintelligence(AI)methodsandapplicationsinbuildingstructuraldesign
2.1.AImethods
ResearchonAImethodshasbeenconductedforaconsiderableperiod.Inthisstudy,thetimelinewaspartitionedusing2012asareferencepoint,whichmarksthe“deeplearningera”owingtothehighlyeffectiveimageclassificationalgorithmAlexNet[
4
].AccordingtoYükseletal.[
65
],asillustratedin
Fig.1
,mostAImethodsbefore2012werecategorizedasclassicalAImethods,whereasthoseafter2012werereferredtoasmodernAImethods.Thisreviewfocusesprimarilyondeep-learningalgorithmsdevelopedafter2012.
(1)ClassicalAImethods
Representativemethodsincludeknowledge-basedsystemsandbio-logicallyinspiredalgorithms.Knowledge-basedsystemsincludeexpertsystems[
23
],fuzzylogic[
48
],andgenerativedesigngrammars[
1
].Biologicallyinspiredalgorithmsincludegeneticalgorithms[
31
],parti-cleswarmoptimization[
84
],andcellularautomata[
25
].
3
100%
0%
W.Liaoetal.
AutomationinConstruction157(2024)105187
Artificialintelligence(Al)
classicalAl
earnngM)
DeepeargD
Artifcialneura
convolutional
neura
networks
(CNN)
cellularautomata(CA)
Differentialevolution
algorithm(DEA)
particleswarm
ptimization(pso)FuzzYlogic
Recurrent
neura
networks
(RNN/LSTM)
BiologicaIIY-inspired
algorithms
Graph
neura
networks
(GNN)
knowledge-based
systems
Geneticalgorithm
network(ANN)
Expertsystem
ModernA
Machinel
GA
Fig.1.Artificialintelligence(AI)methodswidelyadoptedinbuildingstructuraldesign.
(2)ModernAImethods
advancementshaveprovidedengineerswithenhancedinitialdesignsolutions,elevatingbothdesignefficiencyandquality.Theinsightsfrom
Since2012,theAIfieldhasundergoneacomprehensivedevelop-mentdrivenbydeeplearning,whichcanhandlebigdata,extracthigh-dimensionalfeatures,andsignificantlyimprovelearningfromdata[
111
].Typicaldeeplearningmethodsincludedeepconvolutionalneuralnetworks(CNNs)[
4
,
111
],deepgraphneuralnetworks(GNNs)[
99
],anddeeprecurrentneuralnetwork/longshort-termmemory(RNN/LSTM)[
40
,
90
].Inaddition,advanceddeeplearningalgorithmshavebeendevelopedusingthesemethods,suchasthevariationalautoencoder(VAE)
[24
],generativeadversarialnetwork(GAN)[
38
],transformer[
10
],anddiffusionmodels
[28
].Inrecentyears,generativeAI[
10
,
28
,
38
,
96
]hasbecomearepresentativetechnologicaladvancementindeeplearningresearch.TheemergenceofgenerativeAIordeepgenerativemethodshasopenednewpossibilitiesforintelligentdesign. Presently,modernAImethodshavefoundextensiveapplicationsinvariousengineeringfields,includingarchitecture,mechanicalengi-neering,andaerospaceengineering
[65
].Theyhaveproventobeeffectiveingeneratingarchitecturallayouts,renderingarchitecturalimages[
27
,39
,
56
,57
,63
,
64
,79
,89
,
101,107
],generatingwheelstruc-tures[
92
],andaerodynamicshapesofaircraft[
22
].These
theserelatedstudiesserveascrucialreferencesforthedevelopmentofgenerativeAI-basedintelligentdesigninbuildingstructures.
2.2.ApplicationofAIinbuildingstructuraldesign
Thebuildingstructuraldesignprocesscanbedividedintothreeprimarystages:conceptualdesign(schemedesign),detaileddesign(preliminaryoroptimizationdesign),andconstructiondrawingdesign.Amongthesestages,theconceptualdesignstagesignificantlyimpactsthefinaldesignoutcomeandreliesheavilyondesignexperienceandknowledge(asshownin
Fig.2
).Therefore,intheconceptualdesignstage,AIplaysasignificantroleinthestructuraldesignofbuildings.
Thecoretaskofaconceptualbuildingstructuraldesignisdesigngeneration(alsoknownassynthesis).AccordingtoMaher[
62
],buildingstructuraldesignsynthesismethodsmainlyrefertothegenerationofcorrespondingdesignsguidedbyspecificknowledgefragments,suchasheuristicrulesanddescriptiveframeworks.Inaddition,withthedevelopmentandapplicationofgenerativeAItechnologiesthatcanlearndatafeaturesandgeneratenewdesigns,currentstructuraldesign
Highinfluence
Lowinfluence
Lowexpenditure
Highexpenditure
Result
conceptual
Design
precttime
construction
drawing
design
Fig.2.Influenceofthebuildingstructuraldesignphaseonprojectcost[
15
].
pg(pxg)(x)
GeGneaetreaedaataSaSmapmlepdleaata
pdatpad(atxa)(x)
4
W.Liaoetal.
synthesismethodsmainlyincludeheuristicsearch-based,descriptivegrowth-based,andgenerativeAIlearning-baseddesigns(
Table2
).
Heuristicsearch-baseddesignsprimarilyusebiologicallyinspiredcomputationtechniques,suchasgeneticalgorithms,particleswarmoptimization,andcellularautomata[
2
,
5-7
,
33
,
43-45
,
54
,
61
,80
,
88
,
91
,
93
,
112
,
119
].Descriptivegrowth-baseddesignsprimarilyusegenerativedesigngrammar[
1
,
16
,
26
,53
,
87
,
108
].Theseintelligentdesignmethodshavebeenwidelyappliedinmultipleareasofbuildingstructuraldesign,suchasmulti-schemesearch,comparativeselection,andmaterialoptimization,andhavepromotedtheprogressofdigitali-zationandautomationinstructuraldesign.However,theseclassicalmethodsfacedifficultiesregardingdatalearninganddesignefficiency.Incontrast,generativelearningisanintelligentdesignmethoddomi-natedbygenerativeAI,whichhaspowerfuldesigndatalearningandefficientnewdesigngenerationcapabilitiesandhasbeencontinuouslydevelopingandadvancinginrecentyears.
ThemainarchitectureofthegenerativeAIalgorithmsisshownin
Fig.3
,whichincludesadataset,aneuralnetworkmodel,andalossfunctionmodule.ThedevelopmentandapplicationofgenerativeAIinbuildingstructuraldesignwillmainlyfocusonthesethreeparts,andadetailedanalysisandsummaryarepresentedin
Sections3-5
.
Tofurtherunderstandthecurrentstateofresearchonintelligentstructuraldesign,weconductedasearchoftheWebofScienceCoreCollectionforrelevantpapers.First,asearchwasconductedonAI-basedstructuraldesignmethods,yielding188searchresults.Subsequently,searcheswereconductedonclassicalAI-basedandmodernAI-basedstructuraldesignmethods,resultingin130and74searchresults,respectively.Thesearchformulaearelistedin
Table3
.
Fig.4
(a)showsthechangeinthenumberofresearchpapersonAI-basedbuildingstructuraldesigns,indicatingacontinuousincreaseinintelligentdesignresearchovertheyears,withasignificantincreasesince2020.BycomparingtheclassicalandmodernAImethods,asshownin
Fig.4
(b),itcanbeobservedthatclassicalAIwasthemain-streamresearchmethodforintelligentdesignbefore2012.Since2012,modernAIhasrapidlydeveloped,andtherelatedresearchpapershaveincreasedthreefold;however,somedifferencesstillexistcomparedtoclassicalAImethods.Since2020,generativeAItechnologyhassignifi-cantlyimproveditscapabilitiesandhasbeendevelopingin-depthinthefieldofstructuraldesign,withresearchpapersonparwithclassicalAI
AutomationinConstruction157(2024)105187
methodsandaccountingfor48%ofthetotalresearch,showingatrendofsurpassingclassicalAImethods.
Insummary,byanalyzingtherecenttrendsinintelligentbuildingstructuraldesign,AI-basedmethodsusingdeeplearninghavegraduallybecometheprimaryresearchfocus.Thesemethodsarereferredtobydifferentnames,includingintelligentgenerativedesign,deepgenerativedesign,intelligentdesign,anddeep-learning-baseddesign.However,thecoretechnologyofthesemethodsprimarilyinvolveslearningfromexistingdesigndata,empiricalknowledge,andphysicalprinciplestomastertheabilitytogeneratenewdesignsintelligently.AsthisisconsistentwiththeessenceofgenerativeAI,thisstudycollectivelyreferstothesemethodsasgenerativeAI-basedintelligentdesignsforbuildingstructures.
3.Datafeaturerepresentationanddatasetconstruction
Therepresentationofthedatafeaturesiscrucialinbuildingstruc-turalintelligentdesign.Thisrepresentationisrelatedtothegeometricandmechanicalcharacteristicsofthestructuraldesignandissubjecttothelimitationsofdeep-learningalgorithms.Inbuildingstructuraldesign,datafeaturesmainlyincludetopological,pattern,andsizefea-tures.Topologicalfeaturesrefertothelayoutofstructuralcomponentsinspaceandtheconnectionrelationshipbetweencomponentstoeffectivelyresistoveralllateralandverticalloads.Patternfeaturesrefertothelocalgeometricconfigurationofcomponentsthatmustbeinspecialpatterns(suchasL-shaped,T-shaped,andC-shaped)toresisttheloadofthelocalcomponent.Sizefeaturesrefertothecross-sectionalsizesofstructuralcomponents.
GenerativeAIalgorithmsutilizeconvolutionalneuralnetworks(CNNs)toprocessdataastensors(including1-dimensionalvectors,3-dimensionalimages,andn-dimensionalmatrices).Incontrast,graphneuralnetworks(GNNs)aresuitableforprocessingdataingraphs(nodeandedgerepresentations,with1-dimensionalvectorfeaturesembeddedinnodesandedges).Tensordatacanbetterexpresspatternsandsizefeaturesinthedesign,whereasgraphsaremoreconducivetoexpressingtopologicalfeatures.
Therefore,generativeAIalgorithmscaneffectivelyextractfeaturesandlearnbyappropriatelyrepresentingthedatafeaturesinbuildingstructuraldesign.Thissectionreviewsthedatafeaturerepresentation
Table2
Comparisonofthreemainstreamintelligentdesignmodes.
Heuristicsearch-basedDescriptivegrowth-basedGenerativeAIlearning-based
Concept
description
Concept
illustration
Utilizingtheprovidedinitialsolutionwithinpredeterminedboundaryconstraints,the
iterativeprocessaimstosystematicallysearchfortheoptimalresult.
Theprocessinvolvesestablishinggenerationrulesandconstraints,commencingfromtheinitial
design,andsubsequentlyiterativelyoptimizingitbasedonthedescriptivegenerationrules.
Byleveragingexistingdata,AIcomprehendsthe
mappingpatternsbetweenbuildingandstructure.
TrainedAIgeneratesacorrespondingstructuraldesignforanewbuildingdesigninasinglecomprehensive
step.
Representative
methods
Geneticalgorithms
Generativedesigngrammar
GAN
Initialstructuraldesign
Required
Partialrequired
Notrequired
Manually
definedrules
Required
Required
Partialrequired
Iterationdesign
Required
Required
Notrequired
Learning
Notrequired
Notrequired
Required
Performance
High
Relativelyhigh
Medium
Efficiency
Relativelylow
Medium
High
5
Input
output
physical
constraint
Dataloss
W.Liaoetal.
AutomationinConstruction157(2024)105187
Datasets
Neuralnetwork
Evaluation
Groundtruthdata
embeddedphysicallaws
andempiricalrules
Discriminator
Rea
Fake
Generativeneuralnetwork
Fig.3.AlgorithmframeworkofgenerativeAI.
Table3
SearchobjectsandformulasusedintheWebofSciencecorecollectionandtheresultingnumber(accessedonApril20,2023).
Searchobjects
Searchformulas
Numberof
studies
ClassicalAI-based
buildingstructuraldesign
(TS=(“building”OR“architecture*”)
ANDTS=(“structur*design”)ANDTS=
(“intelligen*”OR“automat*”OR
“artificialintelligence”OR“design
intelligence”OR“generative”OR
“optimiz*”OR“explorat*”)ANDTS= (“expertsystem*”OR“fuzzylogic”OR“geneticalgorithm”OR“generative
grammar”OR“evolution”OR“particleswarmoptimization”OR“cellular
automata”))
(TS=(“building”OR“architecture*”)
ANDTS=(“structur*design”)ANDTS=(“intelligen*”OR“automat*”OR
“artificialintelligence”OR“design
130
ModernAI-based
buildingstructuraldesign
intelligence”OR“generative”OR
“optimiz*”OR“explorat*”)ANDTS=
(“machinelearning”OR“deeplearning”
OR“neuralnetwork”OR“generativeadversarialnetwork”OR“variational
74
AI-basedbuildingstructuraldesign
autoencoder”OR“transformer”OR“diffusionmodel”))
Thesumofthesetwoformulas
188
methodsanddatasetconstructionusedinexistingresearch.
3.1.Datafeaturerepresentation
Table4-1
and
Table4-2
summarizethetensor-basedandgraph-baseddatarepresentationmethodsusedinrelatedresearch,and
Fig.5
illustratesthetypicalrepresentationmethods.Tensor-baseddatarep-resentationismorecommonlyusedincurrentresearch,whereasgraph-basedrepresentationsarelesscommon.Tensorrepresentationismoreintuitiveandstraightforward,andthusitismorewidelyusedincurrentgenerativeAI-basedintelligentdesignmethods.Althoughgraphsarebettersuitedforexpressingtopologicalfeatures,theyrequirecomplexandsophisticateddesignstorepresentpatternandsizefeatures.
(1)Tensor-basedrepresentation
(2)Graph-basedrepresentation
3.2.Datasetconstruction
Afterdeterminingthedatafeaturerepresentationmethod,thecollecteddatawereprocessedtoconstructthedataset.
Table5
providesdetailedinformationonthedatasetsdescribedinthecurrentliterature,includingthedesignobject,datacontent,dataquantity,andwhethertheyareopensource.Currently,theconstructionofdatasetsinbuildingstructuralintelligentdesignisrelativelyscarce,andtheintroductionofdatasetsisnotsufficientlycomprehensive.Onesignificantreasonisthelimitedavailabilityofpubliclyaccessiblefielddata.
Dataaugmentationmethodsarewidelyusedtoaddresstheissueoflimiteddata.(1)Imagedataaugmentationmethods,suchasflipping,symmetry,andtranslationofimages,caneffectivelyincreasethedatauptofourtimestheoriginaldatawithoutchangingtheattributesofthestructuraldesign[
13
,
104
].Augmentingdatathroughoverallimagesegmentationcanincreasethedatabyhundredsoftimesbypartitioningthecompleteddesignimageintoseverallocaldesignimageswithoutchangingthebuildingandstructuralsize
[71
,76
].(2)Tensordataaugmentationcangeneratehundredsorthousandsofdatabyparametricdesignforstructuraltopologyandcomponentsize[
30
,46
,72
].(3)Graphdataaugmentationcanalsobeperformedbasedonthespatialrelativecoordinatepositionineachnodeofthegraph,wheredatacanbeaugmented>3000timesbyoveralltranslation,flipping,androtatingcoordinates[
70
,74
].
3.3.Summaryofdatafeaturerepresentation
Currently,thereexistsignificantvariationsintheextractionandrepresentationofdatafeaturesfordifferentbuildingstructureforms.Whetheritinvolvespixel
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2026江西新余高新区国有企业招聘8人笔试备考题库及答案解析
- 2026年青岛大学心血管病研究所(青岛大学附属心血管病医院)公开招聘人员(7人)笔试备考试题及答案解析
- 2026广西嘉煦商贸有限公司公开招聘财务人员1人笔试备考题库及答案解析
- 2026年春季小学音乐人教版(简谱)一年级下册音乐教学计划(含进度表)
- 5.1 综合实践项目 设计并制作生态瓶教学设计(2025-2026学年人教版生物八年级上册)
- 2026湖北神农架林区高级中学招聘校园安保人员(公益性岗位)2人笔试备考试题及答案解析
- 2026湖北武汉市中国东风汽车工业进出口有限公司招聘笔试备考试题及答案解析
- 2026湖北时珍实验室科研人员招聘笔试备考题库及答案解析
- 2026山东威海市社会救助服务中心(救助管理站)招聘1人笔试备考试题及答案解析
- 2026安徽宣城广德市消防救援大队招聘10人笔试备考试题及答案解析
- 珀莱雅考核制度
- 广西壮族自治区贵港市202年秋季学期高二年级期末学科素养检测考试政治试卷
- 中建三局安全生产隐患识别口袋书2020版上
- 医疗影像诊断与报告书写规范
- 旅游规划与产品开发
- 2025年税务会计期末试题及答案
- (2025年)麻醉综合疗法在孤独症谱系障碍儿童中临床应用的专家共识
- 2025年广东中考历史试卷真题解读及答案讲评课件
- 全膝关节置换术患者心理因素关联探究:疼痛信念、自我效能与睡眠质量
- 后循环缺血护理常规课件
- T-HAS 148-2025 工厂化菌糠栽培双孢蘑菇技术规程
评论
0/150
提交评论