版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
checkfor
updates
AutomationinConstruction157(2024)105187
Contentslistsavailableat
ScienceDirect
AutomationinConstruction
journalhomepage:
/locate/autcon
Review
GenerativeAIdesignforbuildingstructures
WenjieLiao
aXinzhengLua,,
*,YifanFei
b,YiGub,YuliHuang
a
aKeyLaboratoryofCivilEngineeringSafetyandDurabilityofMinistryofEducation,TsinghuaUniversity,Beijing100084,China
bBeijingEngineeringResearchCenterofSteelandConcreteCompositeStructures,TsinghuaUniversity,Beijing100084,China
ARTICLEINFO
ABSTRACT
Keywords:
Designingbuildingstructurespresentsvariouschallenges,includinginefficientdesignprocesses,limiteddata
Buildingstructuraldesign
reuse,andtheunderutilizationofpreviousdesignexperience.Generativeartificialintelligence(AI)hasemerged
Datafeaturerepresentation
GenerativeAIalgorithm
Designevaluation
Intelligentoptimization
asapowerfultoolforlearningandcreativelyusingexistingdatatogeneratenewdesignideas.Learningfrompastexperiences,thistechniquecananalyzecomplexstructuraldrawings,combinerequirementtexts,integratemechanicalandempiricalknowledge,andcreatefreshdesigns.Inthispaper,acomprehensivereviewofrecentresearchandapplicationsofgenerativeAIinbuildingstructuraldesignisprovided.Thefocusisonhowdataisrepresented,howintelligentgenerationalgorithmsareconstructed,methodsforevaluatingdesigns,andtheintegrationofgenerationandoptimization.ThisreviewrevealsthesignificantprogressgenerativeAIhasmadeinbuildingstructuraldesign,whilealsohighlightingthekeychallengesandprospects.Thegoalistoprovideareferencethatcanhelpguidethetransitiontowardsmoreintelligentdesignprocesses.
1.Introduction
Thedesignofbuildingstructuresisanuancedtaskthatnecessitatestheblendingofempiricalandmechanicalknowledge.Engineershavebeenconsistentlydiscovering,developing,andimplementingsophisti-catedcomputer-aideddesigntechnologiestostreamlinetheprocessandtargetefficientandreliablestructuraldesigns.
Inthe1980s,intelligentdesignmethodswereproposedbasedonexpertsystemalgorithms[
62
].Inthefollowingyears,aseriesofintel-ligentdesignmethodsbasedonbiologicallyinspiredalgorithmsemergedtogetherwiththeconceptofgenerativedesign[
80
,97
,
102
].Advancementsincomputertechnologydrovethedigitizationandautomationofbuildingstructuraldesignsforwardatanunprecedentedpace.However,expertsystemalgorithmsandbiologicallyinspiredal-gorithmsfindthemselvesgrapplingwithissuesindatalearning,designruleencoding,anddesignefficiency,whichhampertheirwiderapplication.
Inrecentyears,artificialintelligence(AI)technologies,notablydeeplearning,havemaderemarkableprogressinlearningfromexistingdataandgeneratingnewdesigns,whichsetsthemapartfromconventionalexpertsystemsandbiologicallyinspiredalgorithms.GenerativeAIdesign,whichharnessesmachinelearningalgorithmstolearnfromdataandunfoldsnewcontent,hasbeenidentifiedasoneofthetoptentechnologytrendsfor2023[
12
].Intelligentgenerativetechnologies,
suchasDALL-E[
8
]andChatGPTbyOpenAIandAlphaFoldbyDeep-Mind[
41
],havedemonstratedtheversatilityofgenerativeAIinvariousfieldsandhavebecomeacutting-edgeareaofresearch.
Buildingstructuraldesignsrelyprimarilyondrawingsthattranslateintostructuredorimagedata.Engineerscompletethedesignprocessbasedonanarchitecturaldesignwithmultipleconstraintssuchascomplianceandeconomy.Theend-to-enddesignprocessofgenerativeAIisconsistentwiththatofbuildingstructuraldesignbyengineers[
104
],equippedwithpowerfullearningandgeneratingcapabilitiestotackletheintricatepuzzlesofintelligentdesign.Therefore,ithasbecomeanewresearchtopic.
SeveralcomprehensivereviewshavebeenundertakentoexploretherecentadvancementsinintelligenttechnologiesbasedonAIinbuildingstructuraldesign,analysis,construction,andmaintenance(
Table1
).ThesereviewscontributesignificantlytotheunderstandingofvariousAItechnologies,includingmachinelearning,deeplearning,GenerativeAdversarialNetworks(GANs),GenerativePre-trainedTransformer(GPT)models,andGraphNeuralNetworks(GNNs).Bydelvingintothesetopics,thesereviewsshedlightonthepotentialapplicationsandbenefitsoftheseAItechnologiesinbuildingstructures.
Intherealmofdesignandanalysis,severalnotablereviewstudieshavebeenconducted.AldwaikandAdeli
[59
]conductedareviewfocusingontheoptimizationofhigh-risebuildingstructures,utilizingnature-basedoptimizationapproachesliketheneuraldynamicsmodel
*Correspondingauthor.
E-mailaddress:
luxz@
(X.Lu).
/10.1016/j.autcon.2023.105187
Received11June2023;Receivedinrevisedform15October2023;Accepted5November2023
Availableonline11November2023
0926-5805/©2023ElsevierB.V.Allrightsreserved.
2
W.Liaoetal.
Table1
ScopesofexistingreviewstudiesrelatedtoAI-assistantbuildingstructuraldesign.
Dsgn.
Anlys.
C&O&M
DL
(inc.
Gen.
AI)
ML
Optim.
DRL
Aldwaik&
Adeli[
59
]Chietal.
[37
]Amezquita-
Sanchez
etal.[
49
]
LiandAdeli
[
120
]
Afzaletal.
[
58
]
Sunetal.
[35
]Pizarroetal.
[
77
]
Badugeetal.
[
95
]
Wuetal.[
11
]Zakian&
Kaveh[
69
]Yükseletal.
[
65
]
Wangetal.
[
19
]
Omranyetal.
[
34
]
Sakaetal.
[9
]Jiaetal.
[110
]Topuz&
ÇakiciAlp
[
14
]
Koetal.[
42
]Ours
√
√
√
√
√
√
√
√
√
√
√
√
√
√
√
√
√
√
√
√
√
√
√
√
√
√
√
√
√
√
√
√
√
√
√
√
√
√
√
√
√
√
√
√
√
√
√
√
√
√
√
√
√
√
√
√
√
√
√
√
√
√
√
√
√
√
Dsgn.=Design,Anlys.=Analysis,C&O&M=Construction&Operations&Maintenance,DL=DeepLearning,Gen.AI=GenerativeAI,ML=MachineLearning,Optim.=Optimization,andDRL=DeepReinforcementLearning.
andgeneticalgorithms.Chietal.[
37
]andOmranyetal.[
34
]exploredtheintegrationofbuildinginformationmodeling(BIM)withsmarttechnologiesinstructuraldesignpractice,suchasstructuraldesign,planning,analysis,andoptimization.Afzaletal.[
58
]providedanoverviewofstructuralcomponents,optimizationstrategies,andtheutilizationofvariouscomputationaltoolsinRCstructuraldesignopti-mization.Pizarroetal.
[77
]reviewedrule-andlearning-basedmethodsforintelligentrecognitionanddesigninarchitecture.Sunetal.
[35
]delvedintotheresearchonmachinelearningapplicationsinbuildingstructuredesignandperformanceevaluation.ZakianandKaveh[
69
]presentedanoverviewofseismicdesignoptimization,encompassingcommonsolutionmethods,optimizationproblemtypes,andoptimiza-tiongoals.Yükseletal.
[65
]analyzedtheresearchstatusofgenetical-gorithms,fuzzylogic,andmachinelearningmethodsinengineeringstructuredesign,coveringareassuchasdesigngeneration,evaluation,optimization,decision-making,andmodeling.Wangetal.[
19
]con-ductedareviewspecificallyontheapplicationofAItechnologyinmaterialandstructuralanalyseswithinthefieldofcivilengineering.TopuzandÇakiciAlp
[14
]evaluatedthecurrentstateofmachinelearningincomputer-aideddesign,engineering,andmanufacturingofarchitecture.Lastly,Koetal.
[42
]introducedadvancementsinauto-matedspatiallayoutplanningcombinedwithAI.
SeveralreviewstudiesalsoexploredAIapplicationsintherealmofconstructionandmaintenance.Amezquita-Sanchezetal.[
49
],andLiandAdeli[
120
]providedaninsightfulreviewandoutlookontheuti-lizationofmachinelearningtechnologiesinstructuralsystemidentifi-cation,healthmonitoring,vibrationcontrol,design,andoptimization.Badugeetal.[
95
]introducedthelatestadvancementsinapplyingAItechnologies,includingmachinelearninganddeeplearning,inbuilding
AutomationinConstruction157(2024)105187
designandvisualizationwithinthecontextofthebuildingindustry4.0.Wuetal.[
11
]presentedacomprehensivestate-of-the-artreviewontheutilizationofGANstotacklechallengingtasksinthebuiltenvironment.Sakaetal.[
9
]assessedthepotentialofGPTmodelsintheconstructionindustry,identifyingopportunitiesfortheirimplementationthroughouttheprojectlifecycle.Jiaetal.
[110
]exploreddiverseapproachesforconstructinggraphdatafromcommonconstructiondatatypesandhighlightedthesignificantpotentialofGNNsfortheconstructionindustry.
However,thereisanoticeablegapintheanalysisanddiscussionsurroundingthedevelopmentandapplicationofgenerativeAIinthestructuraldesignofbuildings.Thisgapresultsinalackofsystematicandtargetedresearchwithinthisfield.Uponreviewingexistingstudies,itbecomesevidentthattheresearchfindingsinthisareaarefragmentedandincomplete.Researchersencounterchallengesinaddressingspecificissues,whiletheentrybarriersfornewresearchersenteringthisfieldareontherise.ThesefactorscollectivelyimpedefurtherprogressandhindertheadvancementofgenerativeAIinbuildingstructuraldesign.Therefore,thisstudyaimstoprovideanoverviewofexistingintelligentstructuraldesignmethodsandfocusesontheachievementsandappli-cationsofgenerativeAIinbuildingstructuraldesign,whichhasun-dergonerapiddevelopmentoverthepastthreeyears.TheanalysisofexistingstudiesrevealsthattheprimaryresearchareasingenerativeAI-basedstructuraldesignencompassdatarepresentation,generational-gorithms,evaluationmethods,andtheintegrationofAIgenerationwithdesignoptimization.Byconductinginvestigationsinthesepertinentdomains,theadvancementofAI-basedbuildingstructuraldesigntech-nologycanbeeffectivelyfacilitated.Accordingly,thisstudywillpre-dominantlycenteraroundshowcasingtheaccomplishmentsofexistingresearchwithinthesespecificareas.
Section2
providesamacro-introductiontocurrentAImethodsandtheirapplicationsinbuildingstructuraldesign.
Sections3–5
reviewthedatafeaturerepresentation,generativealgorithmconstruction,andevaluationmethodsingenerativeAI.
Section6
introducesmethodscouplingintelligentgenerationandoptimization,andSection7presentstypicalengineeringapplicationcasesofintelligentbuildingstructuredesign.
Section8
providesrelevantconclusionsandprospectsforthefuturedevelopmentofthisresearchfield.
Consequently,thisstudyhighlightsthepotentialofgenerativeAIinbuildingstructuraldesignandtheneedforfurtherresearchinthisfield.ThedevelopmentandapplicationofgenerativeAIinstructuraldesigncansignificantlyenhancetheefficiencyandaccuracyofthedesignprocess,leadingtomoresustainableandsaferbuildingstructures.
2.Introductiontoartificialintelligence(AI)methodsandapplicationsinbuildingstructuraldesign
2.1.AImethods
ResearchonAImethodshasbeenconductedforaconsiderableperiod.Inthisstudy,thetimelinewaspartitionedusing2012asareferencepoint,whichmarksthe“deeplearningera”owingtothehighlyeffectiveimageclassificationalgorithmAlexNet[
4
].AccordingtoYükseletal.[
65
],asillustratedin
Fig.1
,mostAImethodsbefore2012werecategorizedasclassicalAImethods,whereasthoseafter2012werereferredtoasmodernAImethods.Thisreviewfocusesprimarilyondeep-learningalgorithmsdevelopedafter2012.
(1)ClassicalAImethods
Representativemethodsincludeknowledge-basedsystemsandbio-logicallyinspiredalgorithms.Knowledge-basedsystemsincludeexpertsystems[
23
],fuzzylogic[
48
],andgenerativedesigngrammars[
1
].Biologicallyinspiredalgorithmsincludegeneticalgorithms[
31
],parti-cleswarmoptimization[
84
],andcellularautomata[
25
].
3
100%
0%
W.Liaoetal.
AutomationinConstruction157(2024)105187
Artificialintelligence(Al)
classicalAl
earnngM)
DeepeargD
Artifcialneura
convolutional
neura
networks
(CNN)
cellularautomata(CA)
Differentialevolution
algorithm(DEA)
particleswarm
ptimization(pso)FuzzYlogic
Recurrent
neura
networks
(RNN/LSTM)
BiologicaIIY-inspired
algorithms
Graph
neura
networks
(GNN)
knowledge-based
systems
Geneticalgorithm
network(ANN)
Expertsystem
ModernA
Machinel
GA
Fig.1.Artificialintelligence(AI)methodswidelyadoptedinbuildingstructuraldesign.
(2)ModernAImethods
advancementshaveprovidedengineerswithenhancedinitialdesignsolutions,elevatingbothdesignefficiencyandquality.Theinsightsfrom
Since2012,theAIfieldhasundergoneacomprehensivedevelop-mentdrivenbydeeplearning,whichcanhandlebigdata,extracthigh-dimensionalfeatures,andsignificantlyimprovelearningfromdata[
111
].Typicaldeeplearningmethodsincludedeepconvolutionalneuralnetworks(CNNs)[
4
,
111
],deepgraphneuralnetworks(GNNs)[
99
],anddeeprecurrentneuralnetwork/longshort-termmemory(RNN/LSTM)[
40
,
90
].Inaddition,advanceddeeplearningalgorithmshavebeendevelopedusingthesemethods,suchasthevariationalautoencoder(VAE)
[24
],generativeadversarialnetwork(GAN)[
38
],transformer[
10
],anddiffusionmodels
[28
].Inrecentyears,generativeAI[
10
,
28
,
38
,
96
]hasbecomearepresentativetechnologicaladvancementindeeplearningresearch.TheemergenceofgenerativeAIordeepgenerativemethodshasopenednewpossibilitiesforintelligentdesign. Presently,modernAImethodshavefoundextensiveapplicationsinvariousengineeringfields,includingarchitecture,mechanicalengi-neering,andaerospaceengineering
[65
].Theyhaveproventobeeffectiveingeneratingarchitecturallayouts,renderingarchitecturalimages[
27
,39
,
56
,57
,63
,
64
,79
,89
,
101,107
],generatingwheelstruc-tures[
92
],andaerodynamicshapesofaircraft[
22
].These
theserelatedstudiesserveascrucialreferencesforthedevelopmentofgenerativeAI-basedintelligentdesigninbuildingstructures.
2.2.ApplicationofAIinbuildingstructuraldesign
Thebuildingstructuraldesignprocesscanbedividedintothreeprimarystages:conceptualdesign(schemedesign),detaileddesign(preliminaryoroptimizationdesign),andconstructiondrawingdesign.Amongthesestages,theconceptualdesignstagesignificantlyimpactsthefinaldesignoutcomeandreliesheavilyondesignexperienceandknowledge(asshownin
Fig.2
).Therefore,intheconceptualdesignstage,AIplaysasignificantroleinthestructuraldesignofbuildings.
Thecoretaskofaconceptualbuildingstructuraldesignisdesigngeneration(alsoknownassynthesis).AccordingtoMaher[
62
],buildingstructuraldesignsynthesismethodsmainlyrefertothegenerationofcorrespondingdesignsguidedbyspecificknowledgefragments,suchasheuristicrulesanddescriptiveframeworks.Inaddition,withthedevelopmentandapplicationofgenerativeAItechnologiesthatcanlearndatafeaturesandgeneratenewdesigns,currentstructuraldesign
Highinfluence
Lowinfluence
Lowexpenditure
Highexpenditure
Result
conceptual
Design
precttime
construction
drawing
design
Fig.2.Influenceofthebuildingstructuraldesignphaseonprojectcost[
15
].
pg(pxg)(x)
GeGneaetreaedaataSaSmapmlepdleaata
pdatpad(atxa)(x)
4
W.Liaoetal.
synthesismethodsmainlyincludeheuristicsearch-based,descriptivegrowth-based,andgenerativeAIlearning-baseddesigns(
Table2
).
Heuristicsearch-baseddesignsprimarilyusebiologicallyinspiredcomputationtechniques,suchasgeneticalgorithms,particleswarmoptimization,andcellularautomata[
2
,
5-7
,
33
,
43-45
,
54
,
61
,80
,
88
,
91
,
93
,
112
,
119
].Descriptivegrowth-baseddesignsprimarilyusegenerativedesigngrammar[
1
,
16
,
26
,53
,
87
,
108
].Theseintelligentdesignmethodshavebeenwidelyappliedinmultipleareasofbuildingstructuraldesign,suchasmulti-schemesearch,comparativeselection,andmaterialoptimization,andhavepromotedtheprogressofdigitali-zationandautomationinstructuraldesign.However,theseclassicalmethodsfacedifficultiesregardingdatalearninganddesignefficiency.Incontrast,generativelearningisanintelligentdesignmethoddomi-natedbygenerativeAI,whichhaspowerfuldesigndatalearningandefficientnewdesigngenerationcapabilitiesandhasbeencontinuouslydevelopingandadvancinginrecentyears.
ThemainarchitectureofthegenerativeAIalgorithmsisshownin
Fig.3
,whichincludesadataset,aneuralnetworkmodel,andalossfunctionmodule.ThedevelopmentandapplicationofgenerativeAIinbuildingstructuraldesignwillmainlyfocusonthesethreeparts,andadetailedanalysisandsummaryarepresentedin
Sections3-5
.
Tofurtherunderstandthecurrentstateofresearchonintelligentstructuraldesign,weconductedasearchoftheWebofScienceCoreCollectionforrelevantpapers.First,asearchwasconductedonAI-basedstructuraldesignmethods,yielding188searchresults.Subsequently,searcheswereconductedonclassicalAI-basedandmodernAI-basedstructuraldesignmethods,resultingin130and74searchresults,respectively.Thesearchformulaearelistedin
Table3
.
Fig.4
(a)showsthechangeinthenumberofresearchpapersonAI-basedbuildingstructuraldesigns,indicatingacontinuousincreaseinintelligentdesignresearchovertheyears,withasignificantincreasesince2020.BycomparingtheclassicalandmodernAImethods,asshownin
Fig.4
(b),itcanbeobservedthatclassicalAIwasthemain-streamresearchmethodforintelligentdesignbefore2012.Since2012,modernAIhasrapidlydeveloped,andtherelatedresearchpapershaveincreasedthreefold;however,somedifferencesstillexistcomparedtoclassicalAImethods.Since2020,generativeAItechnologyhassignifi-cantlyimproveditscapabilitiesandhasbeendevelopingin-depthinthefieldofstructuraldesign,withresearchpapersonparwithclassicalAI
AutomationinConstruction157(2024)105187
methodsandaccountingfor48%ofthetotalresearch,showingatrendofsurpassingclassicalAImethods.
Insummary,byanalyzingtherecenttrendsinintelligentbuildingstructuraldesign,AI-basedmethodsusingdeeplearninghavegraduallybecometheprimaryresearchfocus.Thesemethodsarereferredtobydifferentnames,includingintelligentgenerativedesign,deepgenerativedesign,intelligentdesign,anddeep-learning-baseddesign.However,thecoretechnologyofthesemethodsprimarilyinvolveslearningfromexistingdesigndata,empiricalknowledge,andphysicalprinciplestomastertheabilitytogeneratenewdesignsintelligently.AsthisisconsistentwiththeessenceofgenerativeAI,thisstudycollectivelyreferstothesemethodsasgenerativeAI-basedintelligentdesignsforbuildingstructures.
3.Datafeaturerepresentationanddatasetconstruction
Therepresentationofthedatafeaturesiscrucialinbuildingstruc-turalintelligentdesign.Thisrepresentationisrelatedtothegeometricandmechanicalcharacteristicsofthestructuraldesignandissubjecttothelimitationsofdeep-learningalgorithms.Inbuildingstructuraldesign,datafeaturesmainlyincludetopological,pattern,andsizefea-tures.Topologicalfeaturesrefertothelayoutofstructuralcomponentsinspaceandtheconnectionrelationshipbetweencomponentstoeffectivelyresistoveralllateralandverticalloads.Patternfeaturesrefertothelocalgeometricconfigurationofcomponentsthatmustbeinspecialpatterns(suchasL-shaped,T-shaped,andC-shaped)toresisttheloadofthelocalcomponent.Sizefeaturesrefertothecross-sectionalsizesofstructuralcomponents.
GenerativeAIalgorithmsutilizeconvolutionalneuralnetworks(CNNs)toprocessdataastensors(including1-dimensionalvectors,3-dimensionalimages,andn-dimensionalmatrices).Incontrast,graphneuralnetworks(GNNs)aresuitableforprocessingdataingraphs(nodeandedgerepresentations,with1-dimensionalvectorfeaturesembeddedinnodesandedges).Tensordatacanbetterexpresspatternsandsizefeaturesinthedesign,whereasgraphsaremoreconducivetoexpressingtopologicalfeatures.
Therefore,generativeAIalgorithmscaneffectivelyextractfeaturesandlearnbyappropriatelyrepresentingthedatafeaturesinbuildingstructuraldesign.Thissectionreviewsthedatafeaturerepresentation
Table2
Comparisonofthreemainstreamintelligentdesignmodes.
Heuristicsearch-basedDescriptivegrowth-basedGenerativeAIlearning-based
Concept
description
Concept
illustration
Utilizingtheprovidedinitialsolutionwithinpredeterminedboundaryconstraints,the
iterativeprocessaimstosystematicallysearchfortheoptimalresult.
Theprocessinvolvesestablishinggenerationrulesandconstraints,commencingfromtheinitial
design,andsubsequentlyiterativelyoptimizingitbasedonthedescriptivegenerationrules.
Byleveragingexistingdata,AIcomprehendsthe
mappingpatternsbetweenbuildingandstructure.
TrainedAIgeneratesacorrespondingstructuraldesignforanewbuildingdesigninasinglecomprehensive
step.
Representative
methods
Geneticalgorithms
Generativedesigngrammar
GAN
Initialstructuraldesign
Required
Partialrequired
Notrequired
Manually
definedrules
Required
Required
Partialrequired
Iterationdesign
Required
Required
Notrequired
Learning
Notrequired
Notrequired
Required
Performance
High
Relativelyhigh
Medium
Efficiency
Relativelylow
Medium
High
5
Input
output
physical
constraint
Dataloss
W.Liaoetal.
AutomationinConstruction157(2024)105187
Datasets
Neuralnetwork
Evaluation
Groundtruthdata
embeddedphysicallaws
andempiricalrules
Discriminator
Rea
Fake
Generativeneuralnetwork
Fig.3.AlgorithmframeworkofgenerativeAI.
Table3
SearchobjectsandformulasusedintheWebofSciencecorecollectionandtheresultingnumber(accessedonApril20,2023).
Searchobjects
Searchformulas
Numberof
studies
ClassicalAI-based
buildingstructuraldesign
(TS=(“building”OR“architecture*”)
ANDTS=(“structur*design”)ANDTS=
(“intelligen*”OR“automat*”OR
“artificialintelligence”OR“design
intelligence”OR“generative”OR
“optimiz*”OR“explorat*”)ANDTS= (“expertsystem*”OR“fuzzylogic”OR“geneticalgorithm”OR“generative
grammar”OR“evolution”OR“particleswarmoptimization”OR“cellular
automata”))
(TS=(“building”OR“architecture*”)
ANDTS=(“structur*design”)ANDTS=(“intelligen*”OR“automat*”OR
“artificialintelligence”OR“design
130
ModernAI-based
buildingstructuraldesign
intelligence”OR“generative”OR
“optimiz*”OR“explorat*”)ANDTS=
(“machinelearning”OR“deeplearning”
OR“neuralnetwork”OR“generativeadversarialnetwork”OR“variational
74
AI-basedbuildingstructuraldesign
autoencoder”OR“transformer”OR“diffusionmodel”))
Thesumofthesetwoformulas
188
methodsanddatasetconstructionusedinexistingresearch.
3.1.Datafeaturerepresentation
Table4-1
and
Table4-2
summarizethetensor-basedandgraph-baseddatarepresentationmethodsusedinrelatedresearch,and
Fig.5
illustratesthetypicalrepresentationmethods.Tensor-baseddatarep-resentationismorecommonlyusedincurrentresearch,whereasgraph-basedrepresentationsarelesscommon.Tensorrepresentationismoreintuitiveandstraightforward,andthusitismorewidelyusedincurrentgenerativeAI-basedintelligentdesignmethods.Althoughgraphsarebettersuitedforexpressingtopologicalfeatures,theyrequirecomplexandsophisticateddesignstorepresentpatternandsizefeatures.
(1)Tensor-basedrepresentation
(2)Graph-basedrepresentation
3.2.Datasetconstruction
Afterdeterminingthedatafeaturerepresentationmethod,thecollecteddatawereprocessedtoconstructthedataset.
Table5
providesdetailedinformationonthedatasetsdescribedinthecurrentliterature,includingthedesignobject,datacontent,dataquantity,andwhethertheyareopensource.Currently,theconstructionofdatasetsinbuildingstructuralintelligentdesignisrelativelyscarce,andtheintroductionofdatasetsisnotsufficientlycomprehensive.Onesignificantreasonisthelimitedavailabilityofpubliclyaccessiblefielddata.
Dataaugmentationmethodsarewidelyusedtoaddresstheissueoflimiteddata.(1)Imagedataaugmentationmethods,suchasflipping,symmetry,andtranslationofimages,caneffectivelyincreasethedatauptofourtimestheoriginaldatawithoutchangingtheattributesofthestructuraldesign[
13
,
104
].Augmentingdatathroughoverallimagesegmentationcanincreasethedatabyhundredsoftimesbypartitioningthecompleteddesignimageintoseverallocaldesignimageswithoutchangingthebuildingandstructuralsize
[71
,76
].(2)Tensordataaugmentationcangeneratehundredsorthousandsofdatabyparametricdesignforstructuraltopologyandcomponentsize[
30
,46
,72
].(3)Graphdataaugmentationcanalsobeperformedbasedonthespatialrelativecoordinatepositionineachnodeofthegraph,wheredatacanbeaugmented>3000timesbyoveralltranslation,flipping,androtatingcoordinates[
70
,74
].
3.3.Summaryofdatafeaturerepresentation
Currently,thereexistsignificantvariationsintheextractionandrepresentationofdatafeaturesfordifferentbuildingstructureforms.Whetheritinvolvespixel
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年度广告发布合同-标的为一系列产品广告宣传
- 电脑打印机市场发展预测和趋势分析
- 2024年度保鲜库工程质量检测合同
- 金属加工用成型机市场发展预测和趋势分析
- 2024年度环保设备采购合同详细条款及标的
- 2024年度智慧城市建设项目实施与运营合同
- 2024年度广告代理服务合同
- 衣服罩储藏用市场发展预测和趋势分析
- 2024年度水库养鱼饲料供应合同
- 2024年度城市轨道交通建设专用设备供应合同
- LTPS-CVD工艺设备介绍(超详细)
- 模拟法庭剧本赡养纠纷案
- Module 9 Unit 2 I feel happy 单元整体教学设计
- JT-T-1218.1-2018城市轨道交通运营设备维修与更新技术规范第1部分:总则
- JT-T-325-2018营运客运类型划分及等级评定
- 2024年内蒙古自治区事业单位联考招聘易考易错模拟试题(共500题)试卷后附参考答案
- 行政复议法-形考作业3-国开(ZJ)-参考资料
- 膝关节骨性关节炎的阶梯治疗
- 校园防暴安全培训
- (中职组)植物病虫害防治知识竞赛考试题库(含答案)
- MOOC 药物分析-中国药科大学 中国大学慕课答案
评论
0/150
提交评论