2021届全国新高考物理冲刺复习 对称法_第1页
2021届全国新高考物理冲刺复习 对称法_第2页
2021届全国新高考物理冲刺复习 对称法_第3页
2021届全国新高考物理冲刺复习 对称法_第4页
2021届全国新高考物理冲刺复习 对称法_第5页
已阅读5页,还剩14页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2021届全国新图考物理冲刺复习

对称法

一.方法介绍

由于物质世界存在某些对称性,使得物理学理论也具有相应的对称性,从而使对称

现象普遍存在于各种物理现象和物理规律中.应用这种对称性不仅能帮助我们认识和探

索物质世界的某些基本规律,而且也能帮助我们去求解某些具体的物理问题,这种思维

方法在物理学中称为对称法.物理中对称现象比比皆是,对称的结构、对称的作用、对称

的电路、对称的物像等等.一般情况下,对称表现为研究对象在结构上的对称性、物理

过程在时间上和空间上的对称性、物理量在分布上的对称性及作用效果的对称性等.用

对称性解题的关键是敏锐地抓住事物在某一方面的对称性,这些对称性往往就是通往答

案的捷径,利用对称法分析解决物理问题,可以避免复杂的数学演算和推导,直接抓住问

题的实质,出奇制胜,快速简便地求解问题.

二.典例分析F

例1如图所示,轻弹簧的一端固定在地面上,另一端与木块6相连,木块

/放在木块6上,两木块质量均为勿,在木块/上施有竖直向下的力£整个装

置处于静止状态。

(1)突然将力b撤去,若运动中从B不分离,则4、6共同运动到最高点时,一

6对力的弹力有多大?

(2)要使4、8不分离,力厂应满足什么条件?

例2.如图甲所示,是半径为的圆的一条直径,该圆处于匀强电场中,场强为反

在圆周平面内,将一带正电q的小球从a点以相同的动能抛出,抛出方向不同时,小球

会经过圆周上不同的点,在这些所有的点中,到达c点时小球的动能最大.已知Nca为30°,

若不计重力和空气阻力,试求:

(1)电场方向与直径间的夹角0-

(2)若小球在a点时初速度方向与电场方向垂直,

小球恰好能落在c点,则初动能为多少?

图甲

第1页共19页

例3.如图所示,正方形匀强磁场磁区边界长为a,由光滑绝缘壁围成.质量为m、电

量为q的带正电的粒子垂直于磁场方向和边界,从下边界的正中央的A孔射入磁区中,

粒子和壁碰撞时无能量和电量损失,不计重力和碰壁时间,设磁感应强度的大小为B,粒

子在磁场中运动半径小于a,欲使粒子仍能从A孔射出,粒子的入射速度应多大?在磁场

中的运动时间是多少?并在下面框中画出轨迹图.

例4.如上图甲所示,在半径为r的圆柱形区域内,充满与圆柱轴线平行的匀强磁场,

一长为石r的金属棒版V与磁场方向垂直地放在磁场区域内,棒的端点物'恰在磁场边界

的圆周上,已知磁感应强度6随时间均匀变化,其变化率为竺=%求秘V中产生的电

2

动势为多大?

三.强化训练

()1.如图所示,相对的两个斜面,倾角分别为37°和53°,在顶点把两个小球以同样

大小的初速度分别向左、向右水平抛出,小球都落在足够长的斜”8

面上.若不计空气阻力,则46两个小球在空中运动的时间之比

(sin370=0.6,COS53°=0.8)\

A.1:1B.4:3C.16:9D.9:1--------------必

()2.如图所示,两块相同的竖直木板/、8之间有质量均为必的

四块相同的砖,用两个大小均为尸的水平力压木板,使砖静止不动,

设所有接触面间的动摩擦系数为P,则第二块砖对第三块砖的摩擦

力的大小为

第2页共19页

A.0B.mgC.uFD.2mg

3.如上图所示,一块均匀的半圆形薄电阻合金片,将它按图甲方式接在电极48之

间,其电阻为R,将它按图乙方式接在电极〃之间,求其电阻值.(电极电阻忽略不计)

4.沿水平方向向一堵竖直光滑的墙壁抛出一个弹性小球4抛出点离水平地面的高度

为力,距离墙壁的水平距离为s,小球与墙壁发生弹性碰撞后,落在水平地面上,落地点

距墙壁的水平距离为2s,如图a所示.求小球抛出时的初速度.

5.如图所示,在空间中的46两点固定着一对等量正点电荷,有一带电微粒在它们

产生的电场中运动,设带电微粒在运动过程中只受到电场力的作用,带电微粒在电场中

所做的运动可能是:

A.匀变速直线运动、B.匀速圆周运动、C类似平抛运动、D.机械振动.

©4

现有某同学分析如下:带电粒子在电场中不可能做匀变速直线运动与类似平抛运动,

因为带电粒子在电场中不可能受到恒定的外力作用,所以A、C是错误的,也不可能做匀

速圆周运动,因为做匀速圆周运动的物体所受的合外力始终指向圆心充当向心力,图示

中两点电荷所产生的电场不可能提供这样的向心力,所以B也是错误的.只有D正确,

理由是在AB连线中点0两侧对称位置之间可以做机械振动。

你认为该同学的全部分析过程是否有错?若没有错,请说明正确答案“D”成立的条

件;若有错,请指出错误并说明理由.

第3页共19页

6.如图所示,在水平方向的匀强电场中,用长为/的绝缘细线,拴住质量为卬、带电

量为g的小球,线的上端。固定,开始时将线和球拉成水平,松开后,小球由静止开始

向下摆动,当摆过60°角时,速度又变为零.求:

(1)4、6两点的电势差如多大?

(2)电场强度多大?

7.如图所示为一块很大的接地导体板,在与导体板相距为d的4处放有带电量为F

的点电荷.(D试求板上感应电荷在导体内产点产生的电场强度;

(2)试求感应电荷在导体外"'点产生的电场强度("与夕’点对导体板右表面是对称

的);

(3)在本题情形,试分析证明导体表面附近的电场强度的方向与导体表面垂直;

(4)试求导体上的感应电荷对点电荷p的作用力.

I

8.设在地面上方的真空室内,存在匀强电场和匀强磁场.已知电场强度和磁感应强

度的方向是相同的,电场强度的大小E=4.0V/m,磁感应强度的大小B=0.15T.今有一个

带负电的质点以u=20m/s的速度在此区域内沿垂直场强方向做匀速直线运动,求此带

电质点的电量与质量之比q/m以及磁场的所有可能方向.(角度可用反三角函数表示)

第4页共19页

9.如图甲所示,一静止的带电粒子g,质量为成不计重力),从尸点经电场£加速,

经{点进入中间磁场氏6方向垂直纸面向里,再穿过中间磁场进入右边足够大的空间磁

场B'(B'=朋,B'方向垂直于纸面向外,然后能够按某一路径再由4返回电场并回到出

发点P,然后再重复前述过程.已知/为。到A的距离,求中间磁场的宽度d和粒子运动

的周期.(虚线表示磁场的分界线)

图甲

例题解析:

例1.【解析】力厂撤去后,系统作简谐运动,该运动具有明显的对称性,该题利用最

点与最低点的对称性来求解,会简单得多。

(1)最高点与最低点有相同大小的回复力,只是方向相反,这里回复力是合外力。

在最低点,即原来平衡的系统在撤去力尸的瞬间,受到的合外力应为R方向竖直

向上:当到达最高点时,系统受到的合外力也应为凡方向竖直向下,力受到的合

外力为工少,方向向下,考虑到重力的存在,所以5对4的弹力为侬£

22

(2)力尸越大越容易分离,讨论临界情况,也利用最高点与最低点回复力的对称

性。最高点时46间虽接触但无弹力,{只受重力,故此时回复力向下,大小为

mg.那么,在最低点时,即刚撤去力厂时,4受的回复力也应等于"冷但根据前一

小题的分析,此时回复力为L尸,这就是说!尸=0g.则/=2侬.因此,使4、

22

B不分离的条件是尸W2mg.

例2.由于从a点以相同的初动能沿不同方向抛出的小球到达圆周上的各点时,其中到达

c点的小球动能最大,因此过。点的切线一定是等势线,由此可以确定电场线的方向,至

于从a点垂直于电场线抛出的小球可按类平抛运动处理.

(1)用对称性判断电场的方向:由题设条件,在圆周平面内,从a点以相同的动能向不

同方向抛出带正电的小球,小球会经过圆周上不同的点,且以经过c点时小球的动能最

大,可知,电场线平行于圆平面.乂根据动能定理,电场力对到达c点的小球做功最多,

为0爆.因此如最大,即c点的电势比圆周上任何一点的电势都低.又因为圆周平面处

于匀强电场中,故连接应,圆周上各点的电势对于0。对称(或作过,点且与圆周相切的

线cf是等势线),应方向即为电场方向(如图乙所示),它与直径a。的夹角为60°.(2)

第5页共19页

小球在匀强电场中做类平抛运动.小球沿垂直于电场方向抛出,设其初速度为小球

质量为加在垂直于电场线方向,有:

X=Vot①

在沿电场线方向,行V=1:"2②

2

由图中几何关系可得:

x=&os300③

y=/?(1十cos60°)④

且:a旭⑤

tn

图乙

将③、④、⑤式代入①、②两式解得:/=理

4机

所以初动能:&=-mv^~-.

28

例3.本题的关键在于头脑中要建立粒子运动的对称图景.其运动图景(最基本)可分为两

类,第一类由图7—2所示.

R'咪”=123,…),第二类由图7—3所示,粒子运动半径

又"爵…瞿,为"

.,^2a4M;r+2)m''"一(2〃+1)2.

t=2kbTT+—=-----n----------

vDq

乂心邑

4.L,Bqa

故”=2(2署)亦

又7=智,

场,IA.X\T2(4“+l)jrm

fixt-(4n+1)7=----&----.

例4.山题可

知,屈¥上有感应电动势,这种感应电动势无法直接计算,但如果图7-3

注意,确'的长为有八结合题意,可虚构两根与网'完全相同的金属棒与棒一起刚好构

第6页共19页

成圆的内接正三角形,如图乙所示;

由法拉第电磁感应定律,这一回路中的感应电动势

=—=迪笳

△tAZ4

由对称性可知,“邠上的感应电动势是整个回路中电动势的L,

3

1Ji

所以:^-E=—k^

34

强化训练参考答案:

l.D2.B3.4R4.因小球与墙壁发生弹性碰撞,故与墙壁碰撞前后入射速度与反

射速度具有对称性,碰撞后小球的运动轨迹与无墙壁阻挡时小球继续前进的轨迹相对称,

如图b所示,所以小球的运动可以转换为平抛运动处理,效果上相

当于小球从4点水平抛出所做的运动.

根据平抛运动的规律:x=%/y=~gt2

2

因为抛出点到落地点的距离为3s,抛出点的高度为儿代入后

5.1)小球在/、6间摆动,根据能量守恒定律有:

£PA=瑜

取A点为零势能的参考点.

则:E,L/nglsin600+g偏=0

所以:如=叵辿,狐=-四侬

2q2q

⑵小球在平衡位置的受力如图.根据共点力的平衡条件有:qE二谢an600

解得电场强度:6-Y弧

q

6.【解析】在讨论一个点电荷受到面电荷(如导体表面的感应电荷)的作用时:根据“镜

像法”可以设想一个“像电荷”,并使它的电场可以代替面电荷的电场,从而把问题大大

简化.

(D导体板静电平衡后有0s=£点,且方向相反,因此板上感应电荷在导体内。点产生的

场强为区=鸟,其中r为4一间距离,方向沿4尸,如图甲所示.(2)因为导

r

体接地,感应电荷分布在右表面,感应电荷在一点和尸,点的电场具有对称

第7页共19页

图乙

性,因此有历=与,方向如图甲所示.(3)考察导体板在表面两侧很靠近表面的两点

r

R点和PJ.如前述分析,在导体外PJ点感应电荷产生的场强大小为

=与.点电荷F在4'点产生的场强大小也是瓦.,=乌.它们的方向

八4十

如图乙.从图乙看出,F'点的场强为上述两个场强的矢量和,即与导体P、'、二.

表面垂直.(4)重复(2)的分析可知,感应电荷在P所在处{点的场强为____[二

国=一绐=4,方向垂直于导体板指向右方,该场作用于点电荷-g

(2d>4d2图甲

的电场力为尸=-g尻,=-竺,负号表示力的方向垂直于导体板指向左方.

4-2

7.1.96C/kg沿与重力方向夹角为arctanO.75,斜向下的一切方向

8.【解析】由粒子能“重复前述过程”,可知粒子运动具有周期性;又由粒子经过4

点进入磁场后能够

按某一路径再返回/点,可知粒子的运动具有对称性.

粒子从/点进入中间磁场做匀速圆周运动,半径为尼过C点进入右边磁场,做半

径为〃的匀速

圆周运动经点尸到点〃,由于过〃点后还做匀速圆周运动回到力(如图乙所示),故弧

的和弧。关

于直线面对称,且如垂直于磁场的分界线.同理可知,OA也同时是弧切的对称轴.因

此粒子的运动轨迹是关于直线切对称的.由于速度方向为切线方向,所以圆弧力G

圆弧山、圆弧的互相相切.

(1)设中间磁场宽度为d,粒子过{点的速度为r由圆周运动的对称性可得:

7?sin0-R-Hsin9,贝!j:。=一

6

带电粒子在加速电场中有:EO'B\B'

qEl=^mv3①

在中间和右边磁场中有:与二%—J

mv三

R=—②

qB

!i

1-}*-d—

d=7ibos9③>.।

图乙

2qB

第8页共19页

(2)粒子运动周期7由三段时间组成,设在电场中做匀变速直线运动的时间为△,则

TT

设在中间磁场中运动的时间为如因为弧所对圆心角为一,所以:

3

7171

3,f32227ml

t2=2XT=2义工•----=-----

2万2乃qB3qB

设隹右边磁场中运动的时间为3因为弧切所对圆心角为一,所以:

3

5万57t

4,4271m571m

2万2乃qB3qB

1.14+nuec2m/7Tzm

所以周期为:T=力+£2+13=2-----»------

\qE3qB

全过程法、逆向思维法处理物理问题

一、方法简介

(-)全过程法

全过程法乂称为过程整体法,它是相对于程序法而言的。它是将研究对象所经历的

各个不同物理过程合并成一个整体过程来研究分析。经全过程整体分析后,可以对全过

程一步列式求解。这样减少了解题步骤,减少了所列的方程数,大大简化了解题过程,

使多过程的综合题的求解变的简捷方便。

动能定理、动量定理都是状态变化的定理,过程量等于状态量的变化。状态量的变

化只取决于始末状态,不涉及中间状态。同样,机械能守恒定律、动量守恒定律是状态

量守恒定律,只要全过程符合守恒条件,就有初状态的状态量和末状态的状态量守恒,

也不必考虑中间状态量。因此,对有关状态量的计算,只要各过程遵循上述定理、定律,

就有可能将几个过程合并起来,用全过程都适用的物理规一次列出方程,直接求得结果。

(-)逆向思维法

所谓"逆向思维",简单来说就是“倒过来想一想”.这种方法用于解物理题,特别是某

些难题,很有好处.下面通过去年高考物理试卷中的几道题的解法分析,谈谈逆向思维

解题法的应用的儿种情况

二.典例分析

第9页共19页

1.全过程应用运动学公式

【例1】汽球以10m/s的速度匀速上升,当上升到120m高度时,有一小金属球从汽球

上脱离。求小球自脱离汽球到着地需多长时间?(小球下落的加速度g=10m/s2)

2.全过程应用动量定理

【例2】质量为60kg的建筑工人,不慎从空中跌落,由于弹性安全带的保护,使他悬挂

起来。已知安全带原长5m,缓冲时间为1.2s,则安全带对工人的平均冲力是多少?

(g=10m/s2)

3.全过程应用动能定理

[例3]物体从高出地面,处由静止自由落下,不考虑空气阻力,落至沙坑表面进入沙

坑深〃处停止(如图).求物体在沙坑中受到的平均阻力是其重力的多少倍?

F;TH

一一入一九

二二。二#

4.全过程应用动量守恒、能量守恒

【例4】如图所示,在磁感应强度大小为8、方向垂直向上的匀强磁场中,有一上、下两

层均与水平面平行的“U”型光滑金属导轨,在导轨面上各放一根完全相同的质量为m

的匀质金属杆4和4,开始时两根金属杆位于同一竖起面内且杆与轨道垂直。设两导轨

面相距为H,导轨宽为L,导轨足够长且电阻不计,金属杆单位长度的电阻为小现有一

质量为丝的不带电小球以水平向右的速度由撞击杆4的中点,撞击后小球反弹落到下

2

层面上的C点。C点与杆4初始位置相距为S。求:

⑴回路内感应电流的最大值;B

⑵整个运动过程中感应电流最多产生了多少热量。

5.逆向思维法解决物理问题

【例5]一物体以某一初速度在粗糙平面上做匀减速直

线运动,最后停下来,若此物体在最初5秒和最后5秒经

过的路程之比为":5。则此物体一共运行了多少时间?

第10页共19页

三、强化训练

1.人从一定高度落地容易造成骨折.一般成人胫骨的极限抗压强度约为1.5xl()7

N/m\胫骨最小横截面积大约为3.2cm2.假若一质量为50kg的人从一定高度直膝双足

落地,落地时其重心又约下降1cm,试计算一下这个高度超过多少米时,就会导致胫骨

骨折?

2.一个木球从水面上电=3米处自由下落,落入水中后木球能达到多深?已知木球

的密度为水密度的3/4,假设空气和水的阻力不计,水有足够深度。

3.如图所示,斜面长为s,倾角为9,一物体质量为m,以初速度V。从斜面底端A

沿斜面向上滑行,斜面与物体间动摩擦因数为〃,物体滑到斜面顶端B飞出斜面,最后落

到与4同一高度的地面上C处,求物体落地时的速度.

4.小球由离地面力高处由静止开始下落,落地时与地面碰撞后即以原速率竖直反弹,

如果小球运动中所受空气阻力大小恒定为重力的(倍CK<1)则小球第一次反弹的高度

为多大?若不计小球的大小,小球总共运动的路程为多大?

5.小球A用不可伸长的轻绳系于。点,在。点正下方有一固定的钉子B。开始时,

将球A拉到与悬点0同高处无初速释放,若绳长为L,则当B与悬点。的距离d满足什

么条件时,球A摆下后将如图所示,绕B点做完整的圆周运动?

L

6.右图中ABCD是一条长轨道,其中AB段是倾角为。的斜

面,CD段是水平的,BC是与AB及CD都相切的一小段圆弧,其

长度可以不计。一质量为M的小滑块在A点从静止状态

释放,沿轨道滑下,最后停在D点。已知A点比CD水

平面高出h,CD段的长度为5。现用一沿着轨道方向的

力推滑块,使它缓慢地由D点推回到A点时停下。设滑

第11页共19页

块与轨道间的动摩擦因数为〃,则推力对滑块做的功等于()

A.mgh8"+/

C.lmgh

D./jmg+"mghctf

7.斜面倾角为。在斜面底端有一弹性挡板与斜面垂直,在斜面上距离挡板为So处

有一小物块从初速率V。开始沿斜面滑动。若物块与斜面之间的动摩擦因数为"(”<tani?),

且滑块每次与挡板碰撞都不改变速率的大小,不考虑物块的大小,求物块总共能运动的

路程。

8.如图所示,一个质量为"7,电量为-q的小物体,可在水平轨道x上运动,0端有

一与轨道垂直的固定墙,轨道处在场强大小为E,方向沿Ox轴正向的匀强电场中,小物

体以初速度”从回点沿Ox轨道运动,运动中受到大小不变的摩擦力后作用,且Fj<qE,

小物体与墙碰撞时不损失机械能,求它在停止前所通过的总路程s。

9.如图是两块水平放置相互平行且正对的金属板,其上板开有一小孔,质量为〃?,

电荷量为4的带正电液滴,自空中自由下落,并由小孔进入匀强电场。设两板电势差为

U、距离为d,欲使液滴在板间下落的深度为d/2,则液滴的高度/?为多少?

10.如图所示,AB和CD为两个斜面,其上部足够长,下部分别与一光滑圆弧面相

切,EH为整个轨道的对称轴,圆弧所对圆心角为120。,半径为2m.某物体在离弧底H

高h=4m处以v()=6m/s沿斜面运动,物体与斜面的动摩擦因数“=0.04,求物体在AB

与CD两斜面上(圆弧除外)运动的总路程(取g=10m/s2).

页共

1219

11.一个质量为4Zg的物体静止在足够大的水平地面上,物体与地面间的动摩擦因

数〃=0.1。从,=0开始,物体受到一个大小和方向呈周期性变化的水平力F作用,力F

随时间的变化规律如图所示。求83秒内物体的位移大小和力F对物体所做的功。g取

10m/s21>

个F/N

12—!

t/s

0!2:4168姐%2旭征->

-4

12.一物体作竖直上抛运动,经过高度为1.8m的窗户历时0.2s,则此物体上升到最

高点与窗户上端的距离是多少?(取g=10m/s2)

例题解析:

【例1】【解析】由于小球脱离汽球后,先做竖直上抛运动再做自由落体运动,就全过程

说是做匀变速直线运动,所以设小球在空中运动的总时间为3若规定竖直向上的方向

t=6s<>

【例2】【解析】人跌落后在重力作用下做自由落体运动,绳拉直后又受安全带的作用,

在重力和弹力共同作用下做变速直线运动,某瞬时速度变为零。

第13页共19页

1,

由/?=2g厂得自由落体时间:

设安全带对工人的平均冲力为F,对人下落的全过程应用动量定理得:

-gQi+E。一九2=0

代入数据,解得尸=11OON

【例3】【解析】解法1:分段列式法.

选物体为研究对象,先研究自由落体过程,只有重力做功,设物体的质量为根,落

到沙坑表面时速度为v,根据动能定理有:

12

mgH=

再研究物体在沙坑中的运动过程,重力做正功,阻力号做负功,根据动能定理有

1,

mgh—Ffh=O—~mv

由①②两式解得

Ff_H+h

mgh

解法2:全程列式法

研究物体运动的全过程,据动能定理有:

mg(H+h)-Ffh=O

_FH+h

解Z得H:—f=------

mgh

点评:若物体的运动过程包含几个不同的物理过程,用动能定理解题时可以分段列

方程,然后联立求解.也可以视全过程为一整体列方程求解.当既能用“分段法”求解,

又能用“全程法”求解时,一般来说,全程法比分段法简捷.

【例4】【解析】⑴对小球和杆4组成的系统,由动量守恒定律得:

又s-vt②

1,

H=]g厂③

第14页共19页

①②③三式联立解得:9=;(%+sJ4)④

回路内感应电动势的最大值E=BL\/1⑤

E

回路内感应电流的最大值1=——⑥

2Lr

④⑤⑥三式联立解得:丁上鱼

4r

⑵两棒组成的系统,对它们从开始作用到达到共同速度的全过程由动量守恒定律得:

mvi=2mv2

由能量守恒定律,整个运动过程中感应电流最多产生热量为:

111/P

=-;9--2m^7-m^s^—y9

QmVV+2H

[例5]【解析】若依据匀变速运动规律列式,将会出现总时间t比前后两个5秒的和10

秒是大还是小的问题:若r>10s将时间分为前5秒和后5秒与中间的时间t2,经复杂运算

得打=-2秒再得出,=8秒的结论。若用逆向的初速度为零的匀加速运动处理,将会简便的

多。

视为反向的初速度为零的加速直线运动

1

则最后5秒通过的路程:,2=—ax529=12.5。

2

1,1,1

2

最初5秒通过的路程:s=-a产一一a(t-5)=-(10r-25)

222

有题中已知的条件:51:52=11:5得

(10t-25):25=11:25

解得运动时间t=8秒

强化训练参考答案:

1•【解析】双脚胫骨面积最小处能承受冲击力的最大值:

F=pS=1.5x107X2X3.2X10^4N=9.6X103N

设人的质量为根,下落的安全极限高度为用,触地后重心又下降的高度为比

对全过程由动能定理得:木球.

mg(A]+/?2)—F/i2=0

hi

解得」尸3处g样植

mg_T_

__h2昆一

第15页共19页

(9.6xltf-5QxlO)xO,15

m=2・7m

50x10

2.【解析】设木球入水的最大深度为加,,设想木球入水后,在水深入2处有一个

与木球等大小的水球,同时由水中h2处上升到水面,如图所示因为在木球下落、水球上

升过程中,只有重力做功,因此对木球、水球和地球系统机械能守恒。取水面下深入2处

为零势能位置由

加木g(%+名)=加水g/?2

3'

%=‘^一4=‘4=3%=6米:愿——£”…一

'"水一加木]_3

4

3.【解析】分析物体的运动过程可分为两个阶段.第一个阶段物体在斜面上做匀减

速直线运动,利用牛顿运动定律和运动学公式,或者应用动能定理可以求出物体在斜面

顶端B处的速度.第二阶段物体做斜抛运动,只有重力做功,可应用机械能守恒定律求

出物体落地时的速度.物体在8处的速度是两个阶段运动的衔接量,按照上述的分析方法,

物体在B处的速度就是一个非常关键的量.

我们能不能全过程来考虑物体的运动呢?尽管物体在前后两个阶段中运动形式不同,

我们还是可以全过程来考虑.物体从A—B—C,重力做的总功为零(因为A、C等高),只

有斜面的摩擦力做负功,因此可以全过程应用动能定理,直接求出现,而不必求出中间

状态量.

对全过程应用动能定理,则

—/jimgcos0,5=+加速—

解得w=4e-2MgscOS8

4•【解析】研究小球由下落开始直到反弹到最高点(离地面高度设为名)的过程,此

过程初末动能皆为0,AEK=°。此过程中,物体受重力、空气阻力和地面作用力,题

设与地面碰撞后以原速率反弹,即碰撞时小球动能未变,地面所作用力所做功为0;重力

做功与途径无关,只由起点与终点两点高度差决定,即U/G=mg(6-久);空气阻力大小不

变,在两段路程上皆做负功,即%=-%加加〃+4)。所以合外力功为

W=mg(j7—-km她+%)

根据动能定理,力=0,即得%=上吆〃。

1+左

小球不断下落和反弹,总的路程不用动能定理也可求得,但比较繁琐。用动能定理

解第二问,只需研究小球由下落开始,直到最终停在地面上的全过程即可。所研究过程

第16页共19页

首末两态动能皆为0,AEK=。。在此过程中只有重力和空气阻力做功,重力做功mg/b

空气阻力做功-kmgs,S为总路程。根据雷=证,有

mgh-kmgs=0

h

s=—

k

本题也可换一个角度考虑,物体最终停留在地面上,其重力势能减少了mgh,完全用

于克服摩擦阻力做功了,即应有mg6=kmgs。

5.【解析】球A由摆下到绳遇到钉B之后作圆周运动的全•--------------------

过程中,受绳拉力和垂力,绳拉力不做功,只有重力做功,球.

A的机械能守恒。研究球A由开始释放至运动到圆周上最高位

置C之过程,其重力势能减少了加薪,动能增加了;加%2,厂

其中直=/-2R,而幺应满足条件%之可,根据机械能守恒,应有

121

mg(l-2R)-~mv(-~m^8

R<-R

5

由图可见d=L-R,因此应有虽然d还应满足d<L,本题的解为|/<dY/。

实际上,机械

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论