




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
第8页/共8页太湖格致中学2021-2022学年九年级12月月考初三数学2021.12一.选择题1.下列函数解析式中,一定为二次函数的是(
)A.y=3x-1 B.y=ax2+bx+c C.s=2t2-2t+1 D.y=x2+2.已知⊙O的半径为5cm,若点A到圆心O的距离为4cm,则点A()A.在⊙O内 B.在⊙O上 C.在⊙O外 D.与⊙O的位置关系无法确定3.如图,正五边形内接于,则的度数是()A.36° B.26° C.30° D.45°4.二次函数y=ax2+bx+c的部分对应值如表,则方程ax2+bx+c=0的解是()x﹣3﹣2﹣1012y﹣12﹣50343A.x1=x2=﹣1 B.x1=﹣1,x2=0 C.x1=﹣1,x2=2 D.x1=﹣1,x2=35.二次函数y=ax2+bx+c(a≠0)与一次函数y=ax+c在同一坐标系中的图象大致为()A. B.C. D.6.如图,圆锥的底面半径r为6cm,高h为8cm,则圆锥的侧面积为()A.30πcm2 B.48πcm2 C.60πcm2 D.80πcm27.如图,直角坐标系中,以5为半径的动圆的圆心A沿x轴移动,当⊙与直线只有一个公共点时,点A的坐标为()A. B. C. D.8.点P(m,n)在以y轴为对称轴的二次函数y=x2+ax+4的图象上.则m﹣n的最大值等于()A. B.4 C.﹣ D.﹣9.如图,抛物线y=﹣x2+1与x轴交于A,B两点,D是以点C(0,﹣3)为圆心,2为半径的圆上的动点,E是线段BD的中点,连接OE,则线段OE的最大值是()A.2 B. C.3 D.10.如图,在平面直角坐标系中,⊙O的圆心在原点,半径为,P(m,n)为⊙O上一点,过点A(﹣6,5),B(0,5)的抛物线y=ax2+bx+c(a≠0)同时也过点P,当代数式||取得最大值时,抛物线的二次项系数a的值为()A. B. C.或 D.2二.填空题11.二次函数y=x2﹣3的顶点坐标是________.12.如图,等腰△ABC的顶角∠BAC=50°,以AB为直径的半圆分别交BC,AC于点D,E.则的度数是____度.13.已知二次函数y=ax2﹣4ax+c的图象与x轴交于A(﹣1,0),B两点,则点B的坐标为_____.14.如图,抛物线与直线交于,两点,则不等式的解集是_______.15.如图,在RtABC中,∠C=90°,AC=6,BC=8,且ABC的三边都与⊙O相切,则AO=________.16.如图,Rt△ABD中,∠D=90°,AB=8,BD=4,在BD延长线上取一点C,使得DC=BD,在直线AD左侧有一动点P满足∠PAD=∠PDB,连接PC,则线段CP长的最大值为________.17.如图,在平面直角坐标系xOy中,等腰△ABO的顶点A在y轴上,AB=OB,tan∠AOB=2,抛物线y=﹣x2+bx+2过点A.(1)若点O关于AB中点的中心对称点也恰好在抛物线y=﹣x2+bx+2上,则b=________;(2)若将△ABO绕点A按逆时针方向旋转45°,得到,点在抛物线y=﹣x2+bx+2上,则b=________.18.如图1是护眼学习台灯,该台灯的活动示意图如图2所示.灯柱BC=6cm,灯臂AC绕着支点C可以旋转,灯罩呈圆弧形(即和).在转动过程中,AD(EF)总是与桌面BH平行.当AC⊥BH时,AB=46cm,DM⊥MH,测得DM=37.5cm(点M在墙壁M上,且MH⊥BH);当灯臂AC转到CE位置时,FN⊥MH测得FN=13.5cm,则点E到桌面BH的距离为_____cm.若此时点C,F,M在同一条直线上,的最低点到桌面BH的距离为35cm,则EF所在圆的半径为_____cm.三.解答题19.如图,已知A,B,C均在⊙O上,请用无刻度的直尺作图.(1)如图1,若点D是AC的中点,试画出∠B的平分线;(2)若∠A=40°,点D在弦BC上,在图2中画出一个含50°角的直角三角形.20.已知二次函数.(1)如果二次函数的图像与x轴有两个交点,求m的取值范围;(2)如图,二次函数的图像过点A(3,0),与y轴交于点B,直线AB与这个二次函数图像的对称轴交于点P,求点P的坐标.21.如图,四边形ABCD是⊙O的内接四边形,,AC为直径,DE⊥BC,垂足为E.(1)求证:CD平分∠ACE;(2)若AC=9,CE=3,求CD的长.22.如图,在平面直角坐标系xOy中,抛物线y=x2+bx经过点A(2,0).直线y=x﹣2与x轴交于点B,与y轴交于点C.(1)求这条抛物线的表达式和顶点的坐标;(2)将抛物线y=x2+bx向右平移,使平移后的抛物线经过点B,求平移后抛物线的表达式;(3)将抛物线y=x2+bx向下平移,使平移后的抛物线交y轴于点D,交线段BC于点P、Q,(点P在点Q右侧),平移后抛物线的顶点为M,如果DP∥x轴,求∠MCP的正弦值.23.如图,在Rt△ABC中,∠C=90°,∠BAC的角平分线AD交BC边于D.以AB上某一点O为圆心作⊙O,使⊙O经过点A和点D.(1)判断直线BC与⊙O位置关系,并说明理由;(2)若AC=3,∠B=30°.①求⊙O半径;②设⊙O与AB边的另一个交点为E,求线段BD、BE与劣弧DE所围成的阴影部分的图形面积.(结果保留根号和π)24.如图,AB是⊙O的直径,点C、D是⊙O上的点,且OD∥BC,AC分别与BD、OD相交于点E、F.(1)求证:点D为的中点;(2)若CB=6,AB=10,求DF的长;(3)若⊙O半径为5,∠DOA=80°,点P是线段AB上任意一点,试求出PC+PD的最小值.25.“武汉加油!中国加油!”疫情牵动万人心,每个人都在为抗击疫情而努力.某厂改造了条口罩生产线,每条生产线每天可生产口罩个.如果每增加一条生产线,每条生产线就会比原来少生产个口罩.设增加条生产线后,每条生产线每天可生产口罩个.直接写出与之间的函数关系式;若每天共生产口罩个,在投入人力物力尽可能少的情况下,应该增加几条生产线?设该厂每天可以生产的口罩个,请求出与的函数关系式,并求出增加多少条生产线时,每天生产的口罩数量最多,最多为多少个?26.如图,在平面直角坐标系中,点是一次函数图象上两点,它们的横坐标分别为其中,过点分别作轴的平行线,交抛物线于点,(1)若求的值;(2)点是抛物线上的一点,求面积的最小值.27.已知,足球球门高米,宽米(如图1)在射门训练中,一球员接传球后射门,击球点A距离地面米,即米,球的运动路线是抛物线的一部分,当球的水平移动距离为6米时,球恰好到达最高点D,即米.以直线为x轴,以直线为y轴建立平面直角坐标系(如图2).(1)求该抛物线的表达式;(2)若足球恰好击中球门横梁,求该足球运动水平距离;(3)若要使球直接落在球门内,则该球员应后退m米后接球射门,击球点为(如图3),请直接写出m的取值范围.28.如图a,抛物线y=ax2﹣2ax﹣b(a<0)与x轴的一个交点为B(﹣1,0),与y轴的正半轴交于点C,顶点为D.(1)求顶点D的坐标(用含a的代数式表示);(2)若以AD为直径圆经过点C.①求抛物线的解析
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 五年级数学(小数乘法)计算题专项练习及答案汇编
- 2025年碳酸甲乙酯项目建设方案
- 2025年私募股权投资项目发展计划
- 陕西警官职业学院《茶艺学》2023-2024学年第二学期期末试卷
- 集美大学《数据分析与可视化工具》2023-2024学年第二学期期末试卷
- 青岛农业大学《文化与翻译(1)》2023-2024学年第一学期期末试卷
- 青岛大学《D仿真设计基础》2023-2024学年第二学期期末试卷
- 青岛恒星科技学院《卫生法规》2023-2024学年第二学期期末试卷
- 青岛港湾职业技术学院《病原生物学与免疫学(实验)》2023-2024学年第二学期期末试卷
- 青岛电影学院《公共建筑设备工程》2023-2024学年第二学期期末试卷
- 安徽省皖北县中联盟2024-2025学年高二下学期3月联考数学试题(A卷)(原卷版+解析版)
- 物流运输过程中的法律法规试题及答案
- 专升本思政全新模式试题及答案
- 2024年内蒙古地质矿产集团有限公司运营管理分公司招聘考试真题
- Unit 7 A Day to Remember Section A (课件)-2024-2025学年英语人教版7年级下册
- 中央2025年中央社会工作部所属事业单位招聘11人笔试历年参考题库附带答案详解
- 暨南大道西延惠山段(江阴界-S261)新建工程报告书
- 消费行为影响机制-深度研究
- 健康咨询与服务推广协议
- 教师语言与沟通艺术知到智慧树章节测试课后答案2024年秋温州大学
- DeepSeek入门到精通-实操+进阶玩法培训
评论
0/150
提交评论