2022贵州省铜仁市中考数学试卷_第1页
2022贵州省铜仁市中考数学试卷_第2页
2022贵州省铜仁市中考数学试卷_第3页
2022贵州省铜仁市中考数学试卷_第4页
2022贵州省铜仁市中考数学试卷_第5页
已阅读5页,还剩23页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022年贵州省铜仁市中考数学试卷

一、选择题

1.(2022•铜仁市)在实数夜,V3,V4,他中,有理数是()

A.V2B.V3C.V4D.V5

2.(2022•铜仁市)如图,在矩形A8C。中,A(-3,2),B(3,2),C(3,-1),则O

3.(2022•铜仁市)2022年4月18S,国家统计局发布数据,今年一季度国内生产总值亿

元.同比增长4.8%,比2021年四季度环比增长1.3%.把27017800000000用科学记数法

表示为()

A.2.70178X1014B.2.70178X1013

C.0.X1015D.0.X1014

4.(2022•铜仁市)在一个不透明的布袋内,有红球5个,黄球4个,白球1个,蓝球3个,

它们除颜色外,大小、质地都相同.若随机从袋中摸取一个球,则摸中哪种球的概率最

大()

A.红球B.黄球C.白球D.蓝球

5.(2022•铜仁市)如图,OA,OB是。。的两条半径,点C在00上,若乙408=80°,

A

A.30°B.40°C.50°D.60°

6.(2022•铜仁市)下列计算错误的是()

A.|-2|=2B,a2-a-3=-

Q2-1Q

33

C.----=Q+1D.(c/)=a

a-1

7.(2022•铜仁市)为了增强学生的安全防范意识,某校初三(1)班班委举行了一次安全知

识抢答赛,抢答题一共20个,记分规则如下:每答对一个得5分,每答错或不答一个扣

1分.小红一共得70分,则小红答对的个数为()

A.14B.15C.16D.17

8.(2022•铜仁市)如图,在边长为6的正方形A8CO中,以8c为直径画半圆,则阴影部

分的面积是()

K

A.9B.6C.3D.12

9.(2022•铜仁市)如图,等边△ABC、等边△£>£:/的边长分别为3和2.开始时点A与点

。重合,OE在A8上,OF在AC上,LDEF沿AB向右平移,当点。到达点8时停止.在

此过程中,设△ABC、重合部分的面积为y,△OEF移动的距离为x,则y与x的

函数图象大致为()

10.(2022•铜仁市)如图,若抛物线yna^+bx+c(aWO)与x轴交于A、B两点,与y轴

交于点C,若/。4c=/OCB.则“c的值为()

二、填空题

11.(2022•铜仁市)不等式组设的解集是.

12.(2022•铜仁市)若一元二次方程/+2x+&=0有两个相等的实数根,则k的值为.

13.(2022•铜仁市)一组数据3,5,8,1,5,8的中位数为.

14.(2022•铜仁市)如图,四边形ABC。为菱形,NABC=80°,延长BC到E,在NOCE

内作射线CM,使得/ECM=30°,过点£>作。F_LCM,垂足为F.若DF=瓜,则3。

的长为(结果保留根号).

15.(2022•铜仁市)如图,点A、8在反比例函数'=芯的图象上,ACLy轴,垂足为。,

AD1

BCLAC.若四边形4O8C的面积为6,—=则左的值为

AC2-----

16.(2022•铜仁市)如图,在边长为2的正方形A8C£>中,点E为AO的中点,将ACDE

沿CE翻折得△CME,点M落在四边形ABCE内.点N为线段CE上的动点,过点N作

NP〃EM交MC干点、P,则MN+NP的最小值为

DiC

L

A---------------B

三、解答题

17.(2022•铜仁市)在平面直角坐标系内有三点A(-1,4)、8(-3,2)、C(0,6).

(1)求过其中两点的直线的函数表达式(选一种情形作答);

(2)判断A、B、C三点是否在同一直线上,并说明理由.

18.(2022•铜仁市)如图,点C在8D上,ABA.BD,EDLBD,AC.LCE,AB=CD.求证:

△ABC9XCDE.

19.(2022•铜仁市)2021年7月,中共中央办公厅,国务院办公厅印发了《关于进一步减

轻义务教育阶段学生作业负担和校外培训负担的意见》.某中学为了切实减轻学生作业负

担,落实课后服务相关要求,开设了书法、摄影、篮球、足球、乒乓球五项课后服务活

动,为了解学生的个性化需求,学校随机抽取了部分学生进行问卷调查,并将调查结果

绘制成如图所示的扇形统计图和条形统计图,请你根据给出的信息解答下列问题:

(1)求〃的值并把条形统计图补充完整;

(2)若该校有2000名学生,试估计该校参加“书法”活动的学生有多少人?

(3)结合调查信息,请你给该校课后服务活动项目开设方面提出一条合理化的建议.

20.(2022•铜仁市)科学规范戴口罩是阻断新冠病毒传播的有效措施之一,某口罩生产厂家

接到一公司的订单,生产一段时间后,还剩280万个口罩未生产,厂家因更换设备,生

产效率比更换设备前提高了40%.结果刚好提前2天完成订单任务.求该厂家更换设备

前和更换设备后每天各生产多少万个口罩?

21.(2022•铜仁市)为了测量高速公路某桥的桥墩高度,某数学兴趣小组在同一水平地面C、

。两处实地测量,如图所示.在C处测得桥墩顶部A处的仰角为60°和桥墩底部B处的

俯角为40°,在。处测得桥墩顶部A处的仰角为30°,测得C、。两点之间的距离为

80〃?,直线A3、在同一平面内,请你用以上数据,计算桥墩A3的高度.(结果保留

整数,参考数据:sin40°-0.64,cos40°-0.77,tan4O°-0.84,曲*1.73)

22.(2022•铜仁市)如图,。是以AB为直径的。。上一点,过点。的切线QE交AB的延

长线于点E,过点8作BC_L£>E交4。的延长线于点C,垂足为点F.

(1)求证:AB=CB;

1

(2)若AB=18,sinA=求所的长.

23.(2022•铜仁市)为实施“乡村振兴”计划,某村产业合作社种植了“千亩桃园”.2022

年该村桃子丰收,销售前对本地市场进行调查发现:当批发价为4千元/吨时,每天可售

出12吨,每吨涨1千元,每天销量将减少2吨,据测算,每吨平均投入成本2千元,为

了抢占市场,薄利多销,该村产业合作社决定,批发价每吨不低于4千元,不高于5.5

千元.请解答以下问题:

(1)求每天销量y(吨)与批发价x(千元/吨)之间的函数关系式,并直接写出自变量

x的取值范围;

(2)当批发价定为多少时;每天所获利润最大?最大利润是多少?

24.(2022•铜仁市)如图,在四边形ABCC中,对角线AC与8。相交于点。,记△C。。

的面积为Si,ZVIOB的面积为S2.

…SiOCOD

(1)问题解决:如图①,若A8〃C£),求证:—=------

S2OAOB

(2)探索推广:如图②,若4B与C。不平行,(1)中的结论是否成立?若成立,请证

明;若不成立,请说明理由.

(3)拓展应用:如图③,在0A上取一点E,使。E=OC,过点E作EF〃C£>交BO于

点F,点口为AB的中点,0H交EF于点、G,且OG=2GH,若詈=|,求£值.

①②③

2022年贵州省铜仁市中考数学试卷

答案与试题解析

一、选择题

1.(2022•铜仁市)在实数鱼,V3,V4,遍中,有理数是()

A.V2B.V3C.V4D.V5

【分析】根据有理数的定义进行求解即可.

解:在实数VLV3,V4=2,近中,有理数为〃,其他都是无理数,

故选:C.

【点评】本题主要考查了实数的分类,掌握有理数和无理数的定义是解题的关键.

2.(2022•铜仁市)如图,在矩形4BCO中,A(-3,2),B(3,2),C(3,-1),贝I]D

C.(-3,-2)D.(-3,-1)

【分析】先根据A、B的坐标求出A8的长,则C£)=AB=6,并证明A8〃C£>〃x轴,同

理可得AO〃BC〃y轴,由此即可得到答案.

解:VA(-3,2),B(3,2),

:.AB=6,AB〃x轴,

•.•四边形ABC。是矩形,

:.CD=AB=6,AB〃CO〃x轴,

同理可得AD//BC//y^,

•点C(3,-1),

二点。的坐标为(-3,-1),

故选:D.

【点评】本题主要考查了坐标与图形,矩形的性质,熟知矩形的性质是解题的关键.

3.(2022•铜仁市)2022年4月18日,国家统计局发布数据,今年一季度国内生产总值亿

元.同比增长4.8%,比2021年四季度环比增长1.3%.把27017800000000用科学记数法

表示为()

A.2.70178X1014B.2.70178X1013

C.o.xio15D.O.XIO14

【分析】科学记数法的表现形式为“Xio”的形式,其中iwmicio,〃为整数,确定”

的值时,要看把原数变成。时,小数点移动了多少位,”的绝对值与小数点移动的位数相

同,当原数绝对值大于等于10时,〃是正数,当原数绝对值小于1时”是负数;由此进

行求解即可得到答案.

解:27017800000000=2.70178X1013

故选:B.

【点评】本题主要考查了科学记数法,解题的关键在于能够熟练掌握科学记数法的定义.

4.(2022•铜仁市)在一个不透明的布袋内,有红球5个,黄球4个,白球1个,蓝球3个,

它们除颜色外,大小、质地都相同.若随机从袋中摸取一个球,则摸中哪种球的概率最

大()

A.红球B.黄球C.白球D.蓝球

【分析】根据概率的求法,因为红球的个数最多,所以摸到红球的概率最大.

解:在一个不透明的布袋内,有红球5个,黄球4个,白球1个,蓝球3个,它们除颜

色外,大小、质地都相同.若随机从袋中摸取一个球,

因为红球的个数最多,所以摸到红球的概率最大,

摸到红球的概率是:—,

13

故选:A.

【点评】本题考查概率的求法:如果一个事件有〃种可能,而且这些事件的可能性相同,

其中事件A出现〃?种结果,那么事件A的概率P(A)=崇

5.(2022•铜仁市)如图,04,08是OO的两条半径,点C在。。上,若乙408=80°,

则NC的度数为()

A

A.30°B.40°C.50°D.60°

【分析】根据圆周角定理即可求解.

解:0B是。0的两条半径,点C在00上,乙4。8=80°,

1

:.ZC=^A0B=40°.

故选:B.

【点评】本题考查的是圆周角定理,熟知在同圆或者在等圆中,同弧或等弧所对的圆周

角相等,都等于这条弧所对的圆心角的一半是解答本题关键.

6.(2022•铜仁市)下列计算错误的是()

A.|-2|=2B.a2-a-3=i

—1

C.----=Q+1D.(〃2)3=/

a-1

【分析】根据绝对值、同底数基的乘法、负整数指数幕、分式的性质、慕的乘方法则计

算,判断即可.

解:4、卜2|=2,本选项计算正确,不符合题意;

B、a2-a'3=a2'3=al=k本选项计算正确,不符合题意;

C、-~;=(a+l)(:1)=「+],本选项计算正确,不符合题意;

a-1a-1

。、(/)3=/,本选项计算错误,符合题意;

故选:D.

【点评】本题主要考查的是绝对值、同底数幕的乘法、负整数指数累、分式的性质、¥

的乘方计算法则,掌握相关的运算法则是解题的关键.

7.(2022•铜仁市)为了增强学生的安全防范意识,某校初三(1)班班委举行了一次安全知

识抢答赛,抢答题一共20个,记分规则如下:每答对一个得5分,每答错或不答一个扣

1分.小红一共得70分,则小红答对的个数为()

A.14B.15C.16D.17

【分析】设小红答对的个数为x个,根据抢答题一共20个,记分规则如下:每答对一个

得(5分),每答错或不答一个扣(1分),列出方程求解即可.

解:设小红答对的个数为x个,

由题意得5x-(20-x)=70,

解得x=15,

故选:B.

【点评】本题主要考查了一元一次方程的应用,正确理解题意是列出方程求解是解题的

关键.

8.(2022•铜仁市)如图,在边长为6的正方形ABC。中,以3c为直径画半圆,则阴影部

分的面积是()

A.9B.6C.3D.12

【分析】设4C与半圆交于点E,半圆的圆心为O,连接BE,OE,证明BE=CE,得到

11

弓形BE的面积=弓形CE的面积,则S协影=SXABE=S»ABC-S»BCE=工x6乂6—^乂

6x3=9.

解:设AC与半圆交于点E,半圆的圆心为。,连接BE,OE,

:四边形A8C。是正方形,

/.ZOCE=45°,

":OE=OC,

:.ZOEC=ZOCE=45°,

:.ZEOC=90°,

垂直平分BC,

:.BE=CE,

:.弓形BE的面积=弓形CE的面积,

S阴影=S&ABE=ShABC—S^BCE=2x6x6-2义6、3=9'

故选:A.

【点评】本题主要考查了求不规则图形的面积,正方形的性质,等腰直角三角形的性质,

圆的性质,熟知相关知识是解题的关键.

9.(2022•铜仁市)如图,等边△4BC、等边△DEF的边长分别为3和2.开始时点A与点

O重合,DE在AB上,。尸在AC上,Z\OE尸沿AB向右平移,当点。到达点8时停止.在

此过程中,设△ABC、△£>£/重合部分的面积为y,△OEF移动的距离为x,则y与x的

函数图象大致为()

【分析】当△£>£:/在^ABC内移动时,△ABC、AOE尸重合部分的面积不变,当4DEF

移出ZvlBC时,计算出SMBN,得到丫=空%2一挈%+竿,从而得到答案.

解:如图所示,当E和3重合时,A£>=AB-£>8=3-2=l,

...当△。斯移动的距离为OWxWl时,△£)£:尸在△4BC内,y=S^DEF=x22=V3,

当E在8的右边时,如图所示,设移动过程中。尸与C8交于点N,过点N作M0垂直

于AE,垂足为M,

根据题意得AO=x,A8=3,

:.DB=AB-AD=3-x,

■:NNDB=6C,ZNBD=60°,

・・・△NQ8是等边三角形,

:・DN=DB=NB=3-x,

■:NMLDB,

1

・・・DM=MB=*(3—x),

VW2+DM2=DA(2,

・・・NM=*3-%),

2

•*•S〉DBN=*DBxNM=(3—x)x(3—x)—(3—%)»

.5/3、223-95/3

•・y=彳(3一%)'=-—x+—.

...当lWx<3时,y是一个关于X的二次函数,且开口向上,

故选:C.

【点评】本题考查图形移动、等边三角形的性质,二次函数的性质,根据题意得到二次

函数的解析式是解题的关键.

10.(2022•铜仁市)如图,若抛物线yno^+bx+c(a#0)与x轴交于A、B两点,与y轴

交于点C,若NOAC=NOCB.则4c的值为()

【分析】设A(xi,0),8(x2,0),C(0,c),由N0AC=/0C8可得△OACs/JsOCB,

从而可得比・X2|=C2=m,由一元二次方程根与系数的关系可得XI叮2=?进而求解.

解:设A(xi,0),B(刈,0),C(0,c),

;二次函数y=o?+法+c的图象过点C(0,c),

♦・0(J=Cf

ZOAC=ZOCB,OC.LAB,

:•△ONCsXOCB,

.OAOC

••—,

OCOB

:.Od=OA・OB,

即田・X2|=C2=-X1・X2,

令0¥2+/?X+C=0,

根据根与系数的关系知XI*X2=W,

2

—x1x2="^=c,

故ac=-1,

故选:A.

【点评】本题考查了二次函数yuaf+fcr+c(〃W0)与关于工的方程/+云+^二。(〃WO)

之间的相互转换,同时要将线段的长转化为点的坐标之间的关系,灵活运用数形结合的

思想是解题关键.

二、填空题

(—2%W6

11.(2022•铜仁市)不等式组的解集是-3Wx〈-l.

1%+1<0

【分析】分别求出不等式组中两不等式的解集,找出两解集的公共部分即可.

-2%<6①

解:

.x+1V0②‘

由①得:X2-3,

由②得:x<-I,

则不等式组的解集为-3WxV-1.

故-3«-1.

【点评】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知

“同大取大;同小取小;大小小大中间找;小小找不到”的原则是解答此题的关键.

12.(2022•铜仁市)若一元二次方程f+2x+Z=0有两个相等的实数根,则4的值为1.

【分析】根据判别式的意义得到△=22-4X1XZ=O,然后解关于我的方程即可.

解:根据题意得△=22-4X1X2=0,即4-4%=0

解得k=l.

故1.

【点评】本题考查了根的判别式:一元二次方程分2+bx+c=O(aWO)的根与A=层-4ac

有如下关系:当△>()时,方程有两个不相等的实数根;当△=()时,方程有两个相等的

实数根;当△<()时,方程无实数根.

13.(2022•铜仁市)一组数据3,5,8,7,5,8的中位数为6.

【分析】先将数据按从小到大的顺序排列,然后根据中位数的定义即可找到这组数据的

中位数.

解:将题目中的数据按照从小到大的顺序排列为:3,5,5,7,8,8,位于最中间位置

5+7

的两个数是5,7,故这组数据的中位数是一=6.

2

故6.

【点评】本题主要考查了中位数,将一组数据按照从小到大(或从大到小)的顺序排列,

如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数.如果这组数据的

个数是偶数,则中间两个数据的平均数就是这组数据的中位数.

14.(2022•铜仁市)如图,四边形ABC。为菱形,ZABC=80°,延长BC到E,在NDCE

内作射线CM,使得/ECM=30°,过点£>作。垂足为F.若DF=显,则8。

的长为_2V6_(结果保留根号).

【分析】连接AC,交BD于H,证明△OCH丝凡得出OH的长度,再根据菱形的

性质得出8。的长度.

由菱形的性质得/AOC=/4BC=80°,ZDCE=80°,ZDHC=90°,

又・・・N£CA/=30°,

AZDCF=50°,

VDF±CM,

:.ZCFD=90°,

AZCDF=40°,

又・・♦四边形A3CO是菱形,

・・・3。平分NADC,

AZ/7DC=40°,

在△C£W和△C。尸中,

(ZCHD=NCFD

]AHDC=Z.FDC,

{DC=DC

AACDH^ACDF(MS),

:・DH=DF=遍,

:.DB=2DH=2V6.

故2遍.

【点评】本题主要考查菱形的性质和全等三角形的判定,菱形的对角线互相平分是此题

的关键知识点,得出NHOC=NF£>C是这个题最关键的一点.

15.(2022•铜仁市)如图,点A、B在反比例函数y=*的图象上,AC,y轴,垂足为。,

AD1

BCVAC.若四边形AOBC的面积为6,—=一,则%的值为3.

AC2----

【分析】设点A(a,3,可得0D=)从而得到CC=3",再由BCLAC.可得

点B(3a,枭,从而得到=然后根据S梯形OBCD=SAAOO+S四边形AOBC,即可求解.

解:设点4(a,今,

*my轴,

L

:.AD=a0D=-

9af

1

9AC~2

・,AC=2m

**•CD=3ci,

VBC1AC.ACJ_y轴,

8C〃y轴,

••.点8(3a,右),

.Drkk2k

••BC=£F=M

,•*sOBCD=SAAOD+S四边形AOBC,

Ik.2k1

(―+—)x3a=-k+6,

2%3a,2

解得:k=3.

故3.

【点评】本题主要考查了反比例函数比例系数的几何意义,熟练掌握反比例函数比例系

数的几何意义是解题的关键.

16.(2022•铜仁市)如图,在边长为2的正方形ABC。中,点E为A。的中点,将△(?£>£

沿CE翻折得△CME,点/落在四边形A3CE内.点N为线段CE上的动点,过点N作

8

NP//EM交MC于点P,则MN+NP的最小值为「

【分析】过点M作MFLCD于F,推出MN+NP的最小值为MF的长,证明四边形DEMG

为菱形,利用相似三角形的判定和性质求解即可.

解:作点尸关于CE的对称点P',

由折叠的性质知CE是NOCM的平分线,

:.点P'在8上,

过点M作MFLCD于F,交CE于点G,

':MN+NP=MN+NP'当MF,

LMN+NP的最小值为MF的长,

连接。G,DM,

由折叠的性质知CE为线段DM的垂直平分线,

\'AD=CD=2,DE=1,

CE=Vl2+22-y/5.

11

,:-CEXDO=^CDXDE,

22

.__275

•♦DnO——g-,

:.E0=^-,

VMFICD,NEDC=90°,

:.DE//MF,

:.ZEDO=ZGMO,

•:CE为线段DM的垂直平分线,

:.DO=OM,/£>OE=/MOG=90°,

.•.△£)0博△MOG,

:.DE=GM,

.•.四边形DEMG为平行四边形,

;NMOG=90°,

二四边形OEMG为菱形,

:.EG=20E=芋,GM=DE=\,

:.CG=^-,

':DE//MF,即DE//GF,

:./\CFGs/\CDE,

3V5

FGCGFG-7-

—=—,即一=-7=-,

DECE1V5

3

AFG=^,

・A4?—i,3_8

..MF—1+呼=亍

8

:・MN+NP的最小值为g;

方法二:同理方法一得出MN+NP的最小值为MF的长,等,

0C=y/CD2-OC2=警,DM=2D0=等,

11

:SACDM=扣M・OC=^CD'MF,

„4754>/5

即一F*~=2XM凡

:.MF=l,

8

:.MN+NP的最小值为g;

故青

【点评】此题主要考查轴对称在解决线段和最小的问题中的应用,熟悉对称点的运用和

画法,知道何时线段和最小,会运用勾股定理和相似三角形的判定和性质求线段长度是

解题的关键.

三、解答题

17.(2022•铜仁市)在平面直角坐标系内有三点A(-1,4)、8(-3,2)、C(0,6).

(1)求过其中两点的直线的函数表达式(选一种情形作答);

(2)判断A、B、C三点是否在同一直线上,并说明理由.

【分析】(1)根据A、8两点的坐标求得直线AB的解析式.

(2)把C的坐标代入看是否符合解析式即可判定.

解:(1)设4(T,4)、8(T,2)两点所在直线解析式为

直线AB的解析式y=x+5.

(2)当x=0时,y=0+5W6,

...点C(0,6)不在直线A8上,即点A、B、C三点不在同一条直线上.

【点评】本题考查了待定系数法求解析式,以及判定是否是直线上的点,掌握一次函数

图像上的点的坐标特征是关键.

18.(2022•铜仁市)如图,点C在8。上,ABA.BD,EDLBD,ACA,CE,AB=CD.求证:

【分析】根据一线三垂直模型利用A4S证明AABC丝△CDE即可.

证明:':AB±BD,EDLBD,ACVCE,

:.ZB=ZD=Z/4CE=90°,

:.NDCE+NDEC=90°,ZBCA+ZDCE=90Q,

:.NBCA=NDEC,

在△ABC和△€1〃£■中,

'/BCA=/DEC

,乙B=KD,

.AB=CD

:.(/L45).

【点评】本题考查了全等三角形的判定,熟练掌握一线三垂直模型是解题的关键.

19.(2022•铜仁市)2021年7月,中共中央办公厅,国务院办公厅印发了《关于进一步减

轻义务教育阶段学生作业负担和校外培训负担的意见》.某中学为了切实减轻学生作业负

担,落实课后服务相关要求,开设了书法、摄影、篮球、足球、乒乓球五项课后服务活

动,为了解学生的个性化需求,学校随机抽取了部分学生进行问卷调查,并将调查结果

绘制成如图所示的扇形统计图和条形统计图,请你根据给出的信息解答下列问题:

(1)求,",〃的值并把条形统计图补充完整;

(2)若该校有2000名学生,试估计该校参加“书法”活动的学生有多少人?

(3)结合调查信息,请你给该校课后服务活动项目开设方面提出一条合理化的建议.

【分析】(1)根据乒乓球所占的比例和人数可求出抽取的总人数,因此可求得参加篮球

的人数,根据摄影的人数可求出机的值,再根据扇形图可求得〃的值;

(2)根据书法所占的比例,可求得参加书法活动的学生人数;

(3)根据参加活动人数的多少可适当调整课后服务活动项目.

解:根据乒乓球所占的比例和人数可得,

10

—x100%=10%,

100

m=10;

根据扇形图可得:1-40%-5%-25%-10%=20%

・・・〃=20;

(2)根据统计图可知“书法”所占25%,

A2000X25%=500(人),

...若该校有2000名学生,试估计该校参加“书法”活动的学生有500人;

(3)根据条形统计图和扇形统计图可知,参加乒乓球的学生人数是最多的,其次是书法、

篮球,参加摄影的学生人数相对来说是较少,最少的是参加足球的学生人数,所以可以

适当的增加乒乓球这项课后服务活动项目的开设,减少足球课后服务活动项目的开设,

以满足大部分同学的需求.

【点评】本题考查了扇形统计图和条形统计图的综合运用,读懂统计图,从不同的统计

图中得到必要的信息是解决问题的关键.

20.(2022•铜仁市)科学规范戴口罩是阻断新冠病毒传播的有效措施之一,某口罩生产厂家

接到一公司的订单,生产一段时间后,还剩280万个口罩未生产,厂家因更换设备,生

产效率比更换设备前提高了40%.结果刚好提前2天完成订单任务.求该厂家更换设备

前和更换设备后每天各生产多少万个口罩?

【分析】设该厂家更换设备前每天生产口罩x万个,则该厂家更换设备后每天生产口罩

(1+40%)x万个,利用工作时间=工作总量+工作效率,结合提前2天完成订单任务,

即可得出关于x的分式方程,解之经检验后即可得出结论.

解:设该厂家更换设备前每天生产口罩x万个,则该厂家更换设备后每天生产口罩(1+40%)

x万个,

依题意得:手280

=2,

(1+40%)%

解得:x=40,

经检验,x=40是原方程的解,且符合题意,

(1+40%)x=(1+40%)X40=56.

答:该厂家更换设备前每天生产口罩40万个,更换设备后每天生产口罩56万个.

【点评】本题考查了分式方程的应用,找准等量关系,正确列出分式方程是解题的关键.

21.(2022•铜仁市)为了测量高速公路某桥的桥墩高度,某数学兴趣小组在同一水平地面C、

。两处实地测量,如图所示.在C处测得桥墩顶部A处的仰角为60°和桥墩底部8处的

俯角为40°,在。处测得桥墩顶部A处的仰角为30°,测得C、。两点之间的距离为

80加,直线AB、CZ)在同一平面内,请你用以上数据,计算桥墩AB的高度.(结果保留

整数,参考数据:sin400-0.64,cos40°^0.77,tan40°20.84,V3«1.73)

A

【分析】延长。C交AB于点E,设CE=x米,由题意可得分别在RtZ\AEC

和RtZ\BEC中,利用锐角三角函数的定义求出AE,BE,在Rt/SAEZ)中,利用锐角三角

函数的定义求出。E,根据CO=DE-CE,列方程求得x的值,即可解答.

解:延长。C交AB于点£

贝I]DELAB,

设CE=x米,

在RtZ\AEC中,ZACE=60°,

.♦.AE=EC・tan60。=岳(米),

在RtZ\BEC中,ZBCE=40°,

/.«£=EC*tan40°=0.84%(米),

在RtZ\4ED中,NO=30°,

•••困瑞=粤=3'(米),

,.・CQ=80米

:.DE-CE=CD,

/.3x-x=80,

:.x=40f

:.AB=AE+BE^40X(1.73+0.84)=102—103米,

桥墩A8的高度为103米.

【点评】本题考查了解直角三角形的应用-仰角俯角问题,熟练掌握锐角三角函数的定

义是解题的关键.

22.(2022•铜仁市)如图,。是以48为直径的00上一点,过点。的切线。E交AB的延

长线于点E,过点B作8C_LZ)E交的延长线于点C,垂足为点F.

(1)求证:AB=CB;

【分析】(1)连接O。,则利用BC1OE,可得OO〃8C,通过证明得出

—ZC,结论得证;

(2)连接80,在RlZXABO中,利用sinA=力求得线段BO的长;在RtZSBO/中,利用

sinZA=sinZFDB,解直角三角形可得结论.

(1)证明:连接OQ,如图1,

,:DE是。。的切线,

:.0DA.DE.

♦;BC工DE,

:.0D//BC.

:.ZODA=ZC,

•••04=0。,

:.Z0DA=ZA.

:.ZA=ZC.

:.AB=BC;

(2)解:连接B£>,则NADB=90°,如图2,

在RtAABD中,

Dn-1

VsinA=^=^,A3=18,

:.BD=6.

■:OB=OD,

:.ZODB=ZOBD.

VZOBD+ZA=ZFDB+ZODB=90°,

I./A=NFDB.

AsinZA=sinZFD£?.

在RtZkBO尸中,

BF1

•;sin/BDF=丽=于

;.BF=2.

由(1)知:OD//BE,

:•△EBFsAEOD.

BEBFBE2

二.—=—.BP:--------=—

OEODBE+99

解得:8E=竽.

图2

C

D

图I

【点评】本题主要考查了圆的切线的性质,垂径定理,圆周角定理,三角形相似的判定

与性质,解直角三角形,勾股定理,等腰三角形的判定,平行线的判定与性质.连接过

切点的半径和直径所对的圆周角是解决此类问题常添加的辅助线.

23.(2022•铜仁市)为实施“乡村振兴”计划,某村产业合作社种植了“千亩桃园”.2022

年该村桃子丰收,销售前对本地市场进行调查发现:当批发价为4千元/吨时,每天可售

出12吨,每吨涨1千元,每天销量将减少2吨,据测算,每吨平均投入成本2千元,为

了抢占市场,薄利多销,该村产业合作社决定,批发价每吨不低于4千元,不高于5.5

千元.请解答以下问题:

(1)求每天销量y(吨)与批发价x(千元/吨)之间的函数关系式,并直接写出自变量

x的取值范围;

(2)当批发价定为多少时,每天所获利润最大?最大利润是多少?

【分析】(1)根据题意直接写出y与x之间的函数关系式和自变量的取值范围;

(2)根据销售利润=销售量X(批发价-成本价),列出销售利润w(千元)与批发价x

(千元/吨)之间的函数关系式,再依据函数的增减性求得最大利润.

解:(1)根据题意得y=12-2(x-4)=-2r+20(4WxW5.5),

所以每天销量y(吨)与批发价x(千元/吨)之间的函数关系式y=-2x+20,

自变量x的取值范围是4WxW5.5:

(2)设每天获得的利润为W千元,根据题意得w=(-2x+20)(x-2)=-2^+24%-

40=-2(x-6)2+32,

:-2<0,

...当x<6,W随x的增大而增大.

;4<xW5.5,

.,.当x=5.5时,卬有最大值,最大值为-2X(5.5-6)2+32=31.5,

将批发价定为5.5千元时,每天获得的利润最大,最大利润是31.5千元.

【点评】本题考查二次函数应用,以及利用二次函数的性质求最大值,解题的关键是读

懂题意,列出函数关系式.

24.(2022•铜仁市)如图,在四边形ABC。中,对角线AC与相交于点。,记△CO。

的面积为Si,AAOB的面积为S2.

„SiOCOD

(I)问题解决:如图①,若A8//CD,求证:—=------

S2OAOB

(2)探索推

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论