版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
山东省枣庄第八中学东校区2024届高二数学第一学期期末教学质量检测试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知圆锥的表面积为,且它的侧面展开图是一个半圆,则这个圆锥的体积为()A. B.C. D.2.如图,在四棱锥中,平面,,,则点到直线的距离为()A. B.C. D.23.若,则下列等式一定成立的是()A. B.C. D.4.已知f(x)=x3+(a-1)x2+x+1没有极值,则实数a的取值范围是()A.[0,1] B.(-∞,0]∪[1,+∞)C.[0,2] D.(-∞,0]∪[2,+∞)5.已知点到直线:的距离为1,则等于()A. B.C. D.6.世界上最早在理论上计算出“十二平均律”的是我国明代杰出的律学家朱载堉,他当时称这种律制为“新法密率”十二平均律将一个纯八度音程分成十二份,依次得到十三个单音,从第二个单音起,每一个单音的频率与它前一个单音的频率的比都相等,且最后一个单音是第一个单音频率的2倍.已知第十个单音的频率,则与第四个单音的频率最接近的是()A.880 B.622C.311 D.2207.命题“,使”的否定是()A.,有 B.,有C.,使 D.,使8.等比数列的各项均为正数,且,则=()A.8 B.16C.32 D.649.已知点、是双曲线C:的左、右焦点,P是C左支上一点,若直线的斜率为2,且为直角三角形,则双曲线C的离心率为()A.2 B.C. D.10.如图,在长方体中,,,则直线和夹角余弦值为()A. B.C. D.11.已知圆:,圆:,则两圆的位置关系为()A.外离 B.外切C.相交 D.内切12.平行六面体中,若,则()A. B.1C. D.二、填空题:本题共4小题,每小题5分,共20分。13.椭圆的右焦点为,过原点的直线与椭圆交于两点、,则的面积的最大值为___________.14.直线l过抛物线的焦点F,与抛物线交于A,B两点,若,则直线l的斜率为______15.用组成所有没有重复数字的五位数中,满足与相邻并且与不相邻的五位数共有____________个.(结果用数值表示)16.若双曲线的渐近线与圆相切,则该双曲线的实轴长为______三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知椭圆的离心率为,点是椭圆E上一点.(1)求E的方程;(2)设过点的动直线与椭圆E相交于两点,O为坐标原点,求面积的取值范围.18.(12分)已知椭圆的左顶点、上顶点和右焦点分别为,且的面积为,椭圆上的动点到的最小距离是(1)求椭圆的方程;(2)过椭圆的左顶点作两条互相垂直的直线交椭圆于不同的两点(异于点).①证明:动直线恒过轴上一定点;②设线段中点为,坐标原点为,求的面积的最大值.19.(12分)如图,在四面体ABCD中,,平面ABC,点M为棱AB的中点,,(1)证明:;(2)求平面BCD和平面DCM夹角的余弦值20.(12分)已知直线过点,且被两条平行直线,截得的线段长为.(1)求的最小值;(2)当直线与轴平行时,求的值.21.(12分)如图,在梯形中,,四边形为矩形,且平面,.(1)求证:;(2)点在线段(不含端点)上运动,设直线与平面所成角为,求的取值范围.22.(10分)已知椭圆的左、右焦点分别为,,离心率为,过的直线与椭圆交于,两点,若的周长为8.(1)求椭圆的标准方程;(2)设为椭圆上的动点,过原点作直线与椭圆分别交于点、(点不在直线上),求面积的最大值.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】设圆锥的半径为,母线长,根据已知条件求出、的值,可求得该圆锥的高,利用锥体的体积公式可求得结果.【详解】设圆锥的半径为,母线长,因为侧面展开图是一个半圆,则,即,又圆锥的表面积为,则,解得,,则圆锥的高,所以圆锥的体积,故选:D.2、A【解析】如图,以为坐标原点,建立空间直角坐标系,然后利用空间向量求解即可【详解】因为平面,平面,平面,所以,,因为所以如图,以为坐标原点,建立空间直角坐标系,则,,,,,即.在上的投影向量的长度为,故点到直线的距离为.故选:A3、D【解析】利用复数除法运算和复数相等可用表示出,进而得到之间关系.【详解】,,,则.故选:D.4、C【解析】求导得,再解不等式即得解.【详解】由得,根据题意得,解得故选:C5、D【解析】利用点到直线的距离公式,即可求得参数的值.【详解】因为点到直线:的距离为1,故可得,整理得,解得.故选:.6、C【解析】依题意,每一个单音的频率构成一个等比数列,由,算出公比,结合,即可求出.【详解】设第一个单音的频率为,则最后一个单音的频率为,由题意知,且每一个单音的频率构成一个等比数列,设公比为,则,解得:又,则与第四个单音的频率最接近的是311,故选:C【点睛】关键点点睛:本题考查等比数列通项公式的运算,解题的关键是分析题意将其转化为等比数列的知识,考查学生的计算能力,属于基础题.7、B【解析】根据特称命题的否定是全称命题即可得正确答案【详解】存在量词命题的否定,只需把存在量词改成全称量词,并把后面的结论否定,所以“,使”的否定为“,有”,故选:B.8、B【解析】由等比数列的下标和性质即可求得答案.【详解】由题意,,所以.故选:B.9、B【解析】根据双曲线的定义和勾股定理利用即可得离心率.【详解】∵直线的斜率为2,为直角三角形,∴,又,∴,.∵,即,∴故选:B.10、D【解析】如图建立空间直角坐标系,分别求出的坐标,由空间向量夹角公式即可求解.【详解】如图:以为原点,分别以,,所在的直线为,,轴建立空间直角坐标系,则,,,,所以,,所以,所以直线和夹角的余弦值为,故选:D.11、C【解析】求出两圆的圆心和半径,根据圆心距与半径和与差的关系,判断圆与圆的位置关系【详解】圆:的圆心为,半径,圆:,即,圆心,半径,两圆的圆心距,显然,即,所以圆与圆相交.故选:C12、D【解析】根据空间向量的运算,表示出,和已知比较可求得的值,进而求得答案.【详解】在平行六面体中,有,故由题意可知:,即,所以,故选:D.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】分析可知点、关于原点对称,可知当、为椭圆短轴的端点时,的面积取得最大值.【详解】椭圆中,,,则,则,由题意可知,、关于原点对称,当、为椭圆短轴的端点时,的面积取得最大值,且最大值为.故答案为:.14、【解析】如图,设,两点的抛物线的准线上的射影分别为,,过作的垂线,在三角形中,等于直线的倾斜角,其正切值即为值,利用在直角三角形中,求得,从而得出直线的斜率【详解】解:如图,当在第一象限时,设,两点的抛物线的准线上的射影分别为,,过作的垂线,在三角形中,等于直线的倾斜角,其正切值即为值,由抛物线的定义可知:设,则,,,在直角三角形中,,所以,则直线的斜率;当在第四象限时,同理可得,直线的斜率,综上可得直线l的斜率为;故答案为:15、【解析】由题意,先利用捆绑法排列和,再利用插空法排列和,即可得答案.【详解】因为满足与相邻并且与不相邻,则将捆绑,内部排序得,再对和全排列得,利用插空法将和插空得,所以满足题意得五位数有.故答案为:16、【解析】由双曲线方程写出渐近线,根据相切关系,结合点线距离公式求参数a,即可确定实轴长.【详解】由题设,渐近线方程为,且圆心为,半径为1,所以,由相切关系知:,可得,又,即,所以双曲线的实轴长为.故答案为:三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2).【解析】(1)列出关于a、b、c的方程组即可求解;(2)根据题意,直线l斜率存在,设其方程为,代入椭圆方程消去y得到关于x的二次方程,根据韦达定理得到根与系数的关系,求出PQ长度,求出原点到l的距离,根据三角形面积公式表示出△OPQ的面积,利用基本不等式求解其范围即可.【小问1详解】由题设知,解得.∴椭圆E的方程为;【小问2详解】当轴时不合题意,故可设,则,得.由题意知,即,得.从而.又点O到直线的距离,∴,令,则,,,所求面积的取值范围为.18、(1)(2)①证明见解析;②【解析】(1)根据题意得,,解方程即可;(2)①设直线:,直线:,联立曲线分别求出点和的坐标,求直线方程判断定点即可;②根据题意得,代入求最值即可.【小问1详解】根据题意得,,,又,三个式子联立解得,,,所以椭圆的方程为:【小问2详解】①证明:设两条直线分别为和,根据题意和得斜率存在且不等于;因为,所以设直线:,直线:;由,解得,所以,同理,.当时,,所以直线的方程为:,整理得,此时直线过定点;当时,直线的方程为:,此时直线过定点,故直线恒过定点.②根据题意得,,,,所以,当且仅当,即时等号成立,故的面积的最大值为:.【点睛】解决直线与椭圆综合问题时,要注意:(1)注意观察应用题设中的每一个条件,明确确定直线、椭圆的条件;(2)强化有关直线与椭圆联立得出一元二次方程后的运算能力,重视根与系数之间的关系、弦长、斜率、三角形的面积等问题19、(1)证明见解析(2)【解析】(1)根据题意,利用线面垂直的判定定理证明平面ABD即可;(2)以A为原点,分别以,,方向为x轴,y轴,z轴的正方向的空间直角坐标系,分别求得平面BCD的一个法向量和平面DCM的一个法向量,然后由求解【小问1详解】证明:∵平面ABC,∴,又,,∴平面ABD,∴【小问2详解】如图,以A为原点,分别以,,的方向为x轴,y轴,z轴的正方向的空间直角坐标系,则,,,,,依题意,可得,设为平面BCD的一个法向量,则,不妨令,可得设为平面DCM的一个法向量,则,不妨令,可得,所以所以平面BCD和平面DCM的夹角的余弦值为20、(1)3;(2)5【解析】(1)由题可得和的距离即为的最小值;(2)可得此时直线的方程为,求出交点坐标即可求出距离.【详解】(1)由题可得当且时,取得最小值,即和的距离,由两平行线间的距离公式,得,所以的最小值为3.(2)当直线与轴平行时,方程为,设直线与直线,分别交于点,,则,,所以,即,所以.21、(1)证明见解析(2)【解析】(1)过作,垂足为,利用正余弦定理可证,再利用线线垂足证明线面垂直,进而可得证;(2)以为坐标原点,分别以,,所在直线为,,轴建立空间直角坐标系,利用坐标法求线面夹角的正弦值.【小问1详解】证明:由已知可得四边形是等腰梯形,过作,垂足为,则,在中,,则,可得,在中,由余弦定理可得,,则,,又平面,平面,,,,平面,平面,又为矩形,,则平面,而平面,;【小问2详解】平面,且,以为坐标原点,分别以,,所在直线为,,轴建立空间直角坐标系,则,,,,,设,则,又,设平面的法向量为,由,取,得,又,,,,则.22、(1);(2).【解析】(1)根据周长可求,再根据离心率可求,求出后可求椭圆的方程.(2)当直线轴时,计算可得的面积的最大值为,直线不垂直轴时,可设,联立直线方程和椭圆方程可求,设与平行且与椭圆相切的直线为:
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 书法教室墙面刷新油漆协议
- 化工原料煤炭配送合同模板
- 舞蹈教室装修合同样书
- 丽水市剧场装修合同模板
- 图书出版居间合同协议书版
- 产妇康复护理月嫂居间合同
- 医疗美容分期贷居间合同
- 写字楼翻新承揽合同模板
- 制药厂装修合同范本示例
- 健身房翻新改造合同范本
- 电视摄像PPT教案
- 汇编语言基础(P111)计算机教学课件PPT
- 海德设计标准注意事项2016.12.26
- 控制系统中常见故障分析及处理
- 一年级上册美术课件-《有趣的勺子》人美版(共28张PPT)
- 常见40种光缆型号图文详解
- 英语教学中让学生当“小老师”的尝试-精选教育文档
- 员工劳动合同期满考核表
- 自动生产线分拣站控制系统设计
- 机械密封工作原理演示版
- 血气分析全解ppt课件
评论
0/150
提交评论