版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
上海市华师大第一附属中学2023-2024学年高二上数学期末教学质量检测模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知:,直线l:,M为直线l上的动点,过点M作的切线MA,MB,切点为A,B,则四边形MACB面积的最小值为()A.1 B.2C. D.42.已知正实数满足,则的最小值为()A. B.9C. D.3.圆与直线的位置关系是()A.相交 B.相切C.相离 D.不能确定4.总体由编号为的30个个体组成.利用所给的随机数表选取6个个体,选取的方法是从随机数表第1行的第3列和第4列数字开始,由左到右一次选取两个数字,则选出来的第5个个体的编号为()A.20 B.26C.17 D.035.已知集合,则()A. B.C. D.6.若抛物线的准线方程是,则抛物线的标准方程是()A. B.C. D.7.“”是“”的()A.充分不必要条件 B.必要不充分条件C.充分必要条件 D.既不充分也不必要条件8.已知各项均为正数的等比数列{},=5,=10,则=A. B.7C.6 D.9.在平形六面体中,其中,,,,,则的长为()A. B.C. D.10.从装有2个红球和2个白球的袋内任取2个球,那么互斥而不对立的两个事件是()A.取出的球至少有1个红球;取出的球都是红球B.取出的球恰有1个红球;取出的球恰有1个白球C.取出的球至少有1个红球;取出的球都是白球D.取出的球恰有1个白球;取出的球恰有2个白球11.已知是直线的方向向量,为平面的法向量,若,则的值为()A. B.C.4 D.12.设,命题“若,则或”的否命题是()A.若,则或B.若,则或C.若,则且D.若,则且二、填空题:本题共4小题,每小题5分,共20分。13.用1,2,3,4,5组成没有重复数字的五位数,其中个位小于百位且百位小于万位的五位数有n个,则的展开式中,的系数是___________.(用数字作答)14.设是数列的前项和,且,则_____________.15.已知5件产品中有2件次品、3件合格品,从这5件产品中任取2件,求2件都是合格品的概率_______.16.已知,若在区间上有且只有一个极值点,则a的取值范围是______三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)在中,,,请再从条件①、条件②这两个条件中选择一个作为已知,然后解答下列问题.(1)求角的大小;(2)求的面积.条件①:;条件②:.18.(12分)已知函数(其中a常数)(1)求的单调递增区间;(2)若,时,的最小值为4,求a的值19.(12分)已知函数是定义在实数集上的奇函数,且当时,(1)求的解析式;(2)若在上恒成立,求的取值范围20.(12分)三棱锥中,,,,直线与平面所成的角为,点在线段上.(1)求证:;(2)若点在上,满足,点满足,求实数使得二面角的余弦值为.21.(12分)已知数列中,,___________,其中.(1)求数列的通项公式;(2)设,求证:数列是等比数列;(3)求数列的前n项和.从①前n项和,②,③且,这三个条件中任选一个,补充在上面的问题中并作答.22.(10分)已知△ABC的内角A,B,C的对边分别是a,b,c,且.(1)求角C的大小;(2)若,求△ABC面积的最大值.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】易知四边形MACB的面积为,然后由最小,根据与直线l:垂直求解.【详解】:化为标准方程为:,由切线长得:,四边形MACB的面积为,若四边形MACB的面积最小,则最小,此时与直线l:垂直,所以,所以四边形MACB面积的最小值,故选:B2、A【解析】根据,将式子化为,进而化简,然后结合基本不等式求得答案.【详解】因为,所以,当且仅当,即时取等号,所以的最小值为.故选:A.3、B【解析】用圆心到直线的距离与半径的大小判断【详解】解:圆的圆心到直线的距离,等于圆的半径,所以圆与直线相切,故选:B4、D【解析】根据题目要求选取数字,在30以内的正整数符合要求,不在30以内的不合要求,舍去,与已经选取过重复的舍去,找到第5个个体的编号.【详解】已知选取方法为从第一行的第3列和第4列数字开始,由左到右一次选取两个数字,所以选取出来的数字分别为12(符合要求),13(符合要求),40(不合要求),33(不合要求),20(符合要求),38(不合要求),26(符合要求),13(与前面重复,不合要求),89(不合要求),51(不合要求),03(符合要求),故选出来的第5个个体的编号为03.故选:D5、D【解析】由集合的关系及交集运算,逐项判断即可得解.【详解】因为集合,,所以,,.故选:D.【点睛】本题考查了集合关系的判断及集合的交集运算,考查了运算求解能力,属于基础题.6、D【解析】根据抛物线的准线方程,可直接得出抛物线的焦点,进而利用待定系数法求得抛物线的标准方程【详解】准线方程为,则说明抛物线的焦点在轴的正半轴则其标准方程可设为:则准线方程为:解得:则抛物线的标准方程为:故选:D7、B【解析】求出的等价条件,结合充分条件和必要条件的定义判断可得出结论.【详解】,因“”“”且“”“”,因此,“”是“”的必要不充分条件.故选:B.8、A【解析】由等比数列的性质知,a1a2a3,a4a5a6,a7a8a9成等比数列,所以a4a5a6=故答案为考点:等比数列的性质、指数幂的运算、根式与指数式的互化等知识,转化与化归的数学思想9、B【解析】根据空间向量基本定理、加法的运算法则,结合空间向量数量积的运算性质进行求解即可.【详解】因为是平行六面体,所以,所以有:,因此有:,因为,,,,,所以,所以,故选:B10、D【解析】利用互斥事件、对立事件的定义逐一判断即可.【详解】A答案中的两个事件可以同时发生,不是互斥事件B答案中的两个事件可以同时发生,不是互斥事件C答案中的两个事件不能同时发生,但必有一个发生,既是互斥事件又是对立事件D答案中的两个事件不能同时发生,也可以都不发生,故是互斥而不对立事件故选:D【点睛】本题考查的是互斥事件和对立事件的概念,较简单.11、A【解析】由,可得,再计算即可求解.【详解】由题意可知,所以,即.故选:A12、C【解析】根据否命题的定义直接可得.【详解】根据否命题的定义可得命题“若,则或”的否命题是若,则且,故选:C.二、填空题:本题共4小题,每小题5分,共20分。13、2022【解析】根据排列和组合计数公式求出,然后利用二项式定理进行求解即可【详解】解:用1,2,3,4,5组成没有重复数字的五位数中,满足个位小于百位且百位小于万位的五位数有个,即,当时,,则系数是,故答案为:202214、【解析】根据题意可知,再利用裂项相消法,即可求出结果.【详解】因为,所以.故答案为:.15、##【解析】列举总的基本事件及满足题目要求的基本事件,然后用古典概型的概率公式求解即可.【详解】设5件产品中的次品为,合格品为,则从这5件产品中任取2件,有共10个基本事件,其中2件都是合格品的有共3个基本事件,故2件都是合格品的概率为故答案为:.16、【解析】求导得,进而根据题意在上有且只有一个变号零点,再根据零点的存在性定理求解.【详解】解:,∵在区间上有且只有一个极值点,∴在上有且只有一个变号零点,∴,解得∴a的取值范围是.故答案为:三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)条件选择见解析,(2)【解析】(1)选①,利用余弦定理求出的值,结合角的取值范围,即可求得角的值;选②,利用余弦定理可求出的值,并利用余弦定理求出的值,结合角的取值范围,即可求得角的值;(2)利用三角形的面积公式可求得的面积.【小问1详解】解:选①,,由余弦定理可得,,所以,.选②,,整理可得,,解得,由余弦定理可得,,所以,.【小问2详解】解:由三角形的面积公式可得.18、(1);(2).【解析】(1)利用三角恒等变换思想化简函数解析式为,然后解不等式,可得答案;(2)由计算出的取值范围,利用正弦函数的基本性质可求得函数的最小值,进而可求得实数的值.【详解】(1),令,解得.所以,函数的单调递增区间为;(2)当时,,所以,所以,解得.19、(1),(2)实数的取值范围是【解析】(1)根据函数奇偶性求解析式;(2)将恒成立转化为令,恒成立,讨论二次函数系数,结合根的分布.【详解】解:(1)因为函数是定义在实数集上的奇函数,所以,当时,则所以当时所以(2)因为时,在上恒成立等价于即在上恒成立令,则①当时,不恒成立,故舍去②当时必有,此时对称轴若即或时,恒成立因为,所以若即时,要使恒成立则有与矛盾,故舍去综上,实数的取值范围是【点睛】应用函数奇偶性可解决的四类问题及解题方法(1)求函数值:将待求值利用奇偶性转化为已知区间上的函数值求解;(2)求解析式:先将待求区间上的自变量转化到已知区间上,再利用奇偶性求解,或充分利用奇偶性构造关于的方程(组),从而得到的解析式;(3)求函数解析式中参数的值:利用待定系数法求解,根据得到关于待求参数的恒等式,由系数的对等性得参数的值或方程(组),进而得出参数的值;(4)画函数图象和判断单调性:利用奇偶性可画出另一对称区间上的图象及判断另一区间上的单调性.20、(1)证明见解析;(2).【解析】(1)证明平面,利用线面垂直的性质可证得结论成立;(2)设,以点为坐标原点,、、所在直线分别为、、轴建立空间直角坐标系,利用空间向量法可得出关于实数的等式,即可解得实数的值.【小问1详解】证明:因为,,则且,,平面,所以为直线与平面所成的线面角,即,,故,,,平面,平面,因此,.【小问2详解】解:设,由(1)可知且,,因为平面,,以点为坐标原点,、、所在直线分别为、、轴建立如下图所示的空间直角坐标系,则、、、、,设平面的法向量为,,,则,取,可得,设平面的法向量为,,,由,取,则,由已知可得,解得.当点为线段的中点时,二面角的平面角为锐角,合乎题意.综上所述,.21、(1)(2)见解析(3)【解析】(1)选①,根据与的关系即可得出答案;选②,根据与的关系结合等差数列的定义即可得出答案;选③,利用等差中项法可得数列是等差数列,再求出公差,即可得解;(2)求出数列的通项公式,再根据等比数列的定义即可得证;(3)求出数列的通项公式,再利用错位相减法即可得出答案.【小问1详解】解:选①,当时,,当时,也成立,所以;选②,因为,所以,所以数列是以为公差的等差数列,所以;选③且,因为,所以数列是等差数列,公差,所以;【小问2详解】
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年桂林市胜利小学教师招聘备考题库及参考答案详解一套
- 物产中大金属集团有限公司2026届秋季校园招聘9名备考题库及答案详解参考
- 浙商银行丽水分行2025年社会招聘备考题库及一套参考答案详解
- 赣江新区人民医院2025年心血管内科医师岗招聘备考题库(第二批)及答案详解1套
- 2025年衡水市景县人民医院公开招聘医护人员备考题库附答案详解
- 2025年上海市浦东新区肺科医院非编人员招聘备考题库完整答案详解
- 西藏自治区教材编译中心2026年度急需紧缺人才引进7人备考题库及完整答案详解一套
- 2025年浙商银行嘉兴分行四季度社会招聘备考题库及一套完整答案详解
- 南京市第一医院2026年公开招聘卫技人员备考题库及答案详解一套
- 理解关心与互助课件
- 珠海市纪委监委公开招聘所属事业单位工作人员12人考试题库附答案
- 心肌炎与心包炎管理指南中心肌炎部分解读2026
- 2025济宁市检察机关招聘聘用制书记员(31人)笔试考试参考试题及答案解析
- 厨师专业职业生涯规划与管理
- 统编版高中政治必修二经济与社会 选择题 专项练习题(含答案)
- 《恒X地产集团地区公司管理办法》(16年12月发文版)
- 智慧社区建设项目施工方案
- 海南槟榔承包协议书
- 仿古建筑概念方案设计说明
- 竞选村支委演讲稿
- DB32-T 1086-2022 高速公路建设项目档案管理规范
评论
0/150
提交评论