版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
上海市宝山区行知中学2023年高二数学第一学期期末统考试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.过两点、的直线的倾斜角为,则的值为()A.或 B.C. D.2.抛物线的焦点到准线的距离是A.2 B.4C. D.3.在四棱锥中,底面ABCD是正方形,侧棱底面ABCD,,点E是棱PC的中点,作,交PB于F.下面结论正确的个数为()①∥平面EDB;②平面EFD;③直线DE与PA所成角为60°;④点B到平面PAC的距离为.A.1 B.2C.3 D.44.设,直线,,则“”是“”的()A.充分不必要条件 B.必要不充分条件C.充分必要条件 D.既不充分也不必要条件5.已知是双曲线的左焦点,圆与双曲线在第一象限的交点为,若的中点在双曲线的渐近线上,则此双曲线的离心率是()A. B.2C. D.6.我们通常称离心率是的椭圆为“黄金椭圆”.如图,已知椭圆,,,,分别为左、右、上、下顶点,,分别为左、右焦点,为椭圆上一点,下列条件中能使椭圆为“黄金椭圆”的是()A. B.C.轴,且 D.四边形的一个内角为7.双曲线的焦点到渐近线的距离为()A. B.C. D.8.已知双曲线左右焦点为,过的直线与双曲线的右支交于,两点,且,若线段的中垂线过点,则双曲线的离心率为()A.3 B.2C. D.9.若数列的通项公式为,则该数列的第5项为()A. B.C. D.10.抛物线有一条重要的性质:平行于抛物线的轴的光线,经过抛物线上的一点反射后经过它的焦点.反之,从焦点发出的光线,经过抛物线上的一点反射后,反射光线平行于抛物线的轴.已知抛物线,从点发出一条平行于x轴的光线,经过抛物线两次反射后,穿过点,则光线从A出发到达B所走过的路程为()A.8 B.10C.12 D.1411.若的解集是,则等于()A.-14 B.-6C.6 D.1412.直线的倾斜角为A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.光线从椭圆的一个焦点发出,被椭圆反射后会经过椭圆的另一个焦点;光线从双曲线的一个焦点发出,被双曲线反射后的反射光线等效于从另一个焦点射出.如图,一个光学装置由有公共焦点的椭圆与双曲线构成,现一光线从左焦点发出,依次经与反射,又回到了点,历时秒;若将装置中的去掉,此光线从点发出,经两次反射后又回到了点,历时秒;若,则与的离心率之比为________14.设、分别是椭圆的左、右焦点.若是该椭圆上的一个动点,则的最大值为_____15.已知,则曲线在点处的切线方程是______.16.定义点到曲线的距离为该点与曲线上所有点之间距离的最小值,则点到曲线距离为___________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知双曲线,抛物线的焦点与双曲线的一个焦点相同,点为抛物线上一点.(1)求双曲线的焦点坐标;(2)若点到抛物线的焦点的距离是5,求的值.18.(12分)甲、乙两人独立地对某一目标射击,已知甲、乙能击中的概率分别为,求:(1)甲、乙恰好有一人击中的概率;(2)目标被击中的概率19.(12分)已知直线经过两条直线和的交点,且与直线垂直(1)求直线的一般式方程;(2)若圆的圆心为点,直线被该圆所截得的弦长为,求圆的标准方程20.(12分)已知椭圆的上下两个焦点分别为,,过点与y轴垂直的直线交椭圆C于M,N两点,△的面积为,椭圆C的离心率为(1)求椭圆C的标准方程;(2)已知O为坐标原点,直线与y轴交于点P,与椭圆C交于A,B两个不同的点,若存在实数,使得,求m的取值范围21.(12分)(1)已知集合,.:,:,并且是的充分条件,求实数的取值范围(2)已知:,,:,,若为假命题,求实数的取值范围22.(10分)已知等差数列的前n项和为,若公差,且,,成等比数列.(1)求的通项公式;(2)求数列的前n项和.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】利用斜率公式可得出关于实数的等式与不等式,由此可解得实数的值.详解】由斜率公式可得,即,解得.故选:D.2、D【解析】因为抛物线方程可化为,所以抛物线的焦点到准线的距离是,故选D.考点:1、抛物线的标准方程;2、抛物线的几何性质.3、D【解析】①由题意连接交于,连接,则是中位线,证出,由线面平行的判定定理知∥平面;②由底面,得,再由证出平面,即得,再由是正方形证出平面,则有,再由条件证出平面;③根据边长证明△DEO是等边三角形即可;④根据等体积法即可求.【详解】①如图所示,连接交于点,连接底面是正方形,点是的中点在中,是中位线,而平面且平面,∥平面;故①正确;②如图所示,底面,且平面,,,是等腰直角三角形,又是斜边的中线,(*),由底面,得,底面是正方形,,又,平面,又平面,(**),由(*)和(**)知平面,而平面,又,且,平面;故②正确;③如图所示,连接AC交BD与O,连接OE,由OE是三角形PAC中位线知OE∥PA,故∠DEO为异面直线PA和DE所成角或其补角,由②可知DE=,OD=,OE=,∴△DEO是等边三角形,∴∠DEO=60°,故③正确;④如图所示,设B到平面PAC的距离为d,由题可知PA=AC=PC=,故,由.故④正确.故正确的有:①②③④,正确的个数为4.故选:D.4、A【解析】由可求得实数的值,再利用充分条件、必要条件的定义判断可得出结论.【详解】若,则,解得或,因此,“”是“”的充分不必要条件.故选:A.5、A【解析】根据双曲线的几何性质和平面几何性质,建立关于a,b,c的方程,从而可求得双曲线的离心率得选项.【详解】由题意可设右焦点为,因为,且圆:,所以点在以焦距为直径的圆上,则,设的中点为点,则为的中位线,所以,则,又点在渐近线上,所以,且,则,,所以,所以,则在中,可得,,即,解得,所以,故选:A【点睛】方法点睛:(1)求双曲线的离心率时,将提供的双曲线的几何关系转化为关于双曲线基本量的方程或不等式,利用和转化为关于e的方程或不等式,通过解方程或不等式求得离心率的值或取值范围(2)对于焦点三角形,要注意双曲线定义的应用,运用整体代换的方法可以减少计算量6、B【解析】先求出椭圆的顶点和焦点坐标,对于A,根据椭圆的基本性质求出离心率判断A;对于B,根据勾股定理以及离心率公式判断B;根据结合斜率公式以及离心率公式判断C;由四边形的一个内角为,即即三角形是等边三角形,得到,结合离心率公式判断D.【详解】∵椭圆∴对于A,若,则,∴,∴,不满足条件,故A不符合条件;对于B,,∴∴,∴∴,解得或(舍去),故B符合条件;对于C,轴,且,∴∵∴,解得∵,∴∴,不满足题意,故C不符合条件;对于D,四边形的一个内角为,即即三角形是等边三角形,∴∴,解得∴,故D不符合条件故选:B【点睛】本题主要考查了求椭圆离心率,涉及了勾股定理,斜率公式等的应用,充分利用建立的等式是解题关键.7、D【解析】根据题意,由双曲线的标准方程可得双曲线的焦点坐标以及渐近线方程,由点到直线的距离公式计算可得答案.【详解】解:根据题意,双曲线的方程为,其焦点坐标为,其渐近线方程为,即,则其焦点到渐近线的距离;故选D.【点睛】本题考查双曲线的几何性质,关键是求出双曲线的渐近线与焦点坐标.8、C【解析】由双曲线的定义得出中各线段长(用表示),然后通过余弦定理得出的关系式,变形后可得离心率【详解】由题意又则有:可得:,,中,中.可得:解得:则有:故选:C9、C【解析】直接根据通项公式,求;【详解】,故选:C10、C【解析】利用抛物线的定义求解.【详解】如图所示:焦点为,设光线第一次交抛物线于点,第二次交抛物线于点,过焦点F,准线方程为:,作垂直于准线于点,作垂直于准线于点,则,,,,故选:C11、A【解析】由一元二次不等式的解集,结合根与系数关系求参数a、b,即可得.【详解】∵的解集为,∴-5和2为方程的两根,∴有,解得,∴.故选:A.12、B【解析】分析出直线与轴垂直,据此可得出该直线的倾斜角.【详解】由题意可知,直线与轴垂直,该直线的倾斜角为.故选:B.【点睛】本题考查直线的倾斜角,关键是掌握直线倾斜角的定义,属于基础题二、填空题:本题共4小题,每小题5分,共20分。13、##0.75【解析】根据椭圆和双曲线定义用长半轴长和实半轴长表示出撤掉装置前后的路程,然后由已知可解.【详解】记椭圆的长半轴长为,双曲线的实半轴长为,由椭圆和双曲线的定义有:,得,即,又由椭圆定义知,,因为,所以,即所以.故答案为:14、4【解析】设,写出、的坐标,利用向量数量积的坐标表示有,根据椭圆的有界性即可求的最大值.【详解】由题意知:,,若,∴,,∴,而,则,而,∴当时,.故答案为:【点睛】关键点点睛:利用向量数量积的坐标表示及椭圆的有界性求最值.15、【解析】求导,得到,写出切线方程.【详解】因为,所以,则,所以曲线在点处的切线方程是,即,故答案为:16、2【解析】设出曲线上任意一点,利用两点间距离公式表达出,利用基本不等式求出最小值.【详解】当时,显然不成立,故,此时,设曲线任意一点,则,其中,当且仅当,即时等号成立,此时即为最小值.故答案为:2三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2).【解析】(1)根据双曲线的方程求出即得双曲线的焦点坐标;(2)先求出的值,再解方程得解.【详解】(1)因为双曲线的方程为,所以.所以.所以.所以双曲线的焦点坐标分别为.(2)因为抛物线的焦点与双曲线的一个焦点相同,所以抛物线的焦点坐标是(2,0),所以.因为点为抛物线上一点,所以点到抛物线的焦点的距离等于点到抛物线的准线的距离.因为点到拋物线的焦点的距离是5,即,所以.【点睛】本题主要考查双曲线的焦点坐标的求法,考查抛物线的定义和几何性质,意在考查学生对这些知识的理解掌握水平.18、(1);(2).【解析】(1)分为甲击中且乙没有击中,和乙击中且甲没有击中两种情况,进而根据独立事件概率公式求得答案;(2)先考虑甲乙都没有击中,进而根据对立事件概率公式和独立事件概率公式求得答案.【小问1详解】设甲、乙分别击中目标为事件,,易知,相互独立且,,甲、乙恰好有一人击中的概率为.【小问2详解】目标被击中的概率为.19、(1)(2)【解析】(1)由题意求出两直线的交点,再求出所求直线的斜率,用点斜式写出直线的方程;(2)根据题意求出圆的半径,由圆心写出圆的标准方程【小问1详解】解:由题意知,解得,直线和的交点为;设直线的斜率为,与直线垂直,;直线的方程为,化为一般形式为;【小问2详解】解:设圆的半径为,则圆心为到直线的距离为,由垂径定理得,解得,圆的标准方程为20、(1);(2)或或.【解析】(1)根据已知条件,求得的方程组,解得,即可求得椭圆的方程;(2)对的取值进行分类讨论,当时,根据三点共线求得,联立直线方程和椭圆方程,利用韦达定理,结合直线交椭圆两点,代值计算即可求得结果.【小问1详解】对椭圆,令,故可得,则,故,则,又,,故可得,则椭圆的方程为:.【小问2详解】直线与y轴交于点P,故可得的坐标为,当时,则,由椭圆的对称性可知:,故满足题意;当时,因为三点共线,若存在实数,使得,即,则,故可得.又直线与椭圆交于两点,故联立直线方程,与椭圆方程,可得:,则,即;设坐标为,则,又,即,故可得:,即,也即,代入韦达定理整理得:,即,当时,上式不成立,故可得,又,则,整理得:,解得,即或.综上所述:的取值范围是或或.【点睛】本题考察椭圆方程的求解,以及椭圆中范围问题的处理;解决本题的关键一是要求得的取值,二是充分利用韦达定理以及直线和曲线相交,则联立方程组后得到的一元二次方程的,属综合中档题.21、(1);(2)【解析】(1)由二次函数的性质,求得,又由,求得集合,根据命题是命题的充分条件,所以,列出不等式,即可求解(2)依题意知,均为假命题,分别求得实数的取值范围,即可求解【详解】(1)由,∵,∴,,∴,所以集合,由,得,所以集合,因为命题是命题的充分条件,所以,则,解得或,∴实数的取值范围是.(2)依题意知,,均为假命题,当是假命题时,恒成立,则有,当是假命题时,则有,或.所以由均为假命
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 《求职求职礼仪》课件
- 小学一年级20以内100道口算题
- 小学三年级数学三位数加减法口算题
- 《创业课复习》课件
- 《菌种的概述》课件
- 有文采高考作文点评任是“无情”也动人
- 《发票管理办法学习》课件
- 娱乐休闲行业助理工作总结
- 养老院保安工作评价
- 体育行业助理的主要任务总结
- 中山市2023-2024八年级上学期期末考试数学试卷
- 2024年广州市南沙区初中语文毕业班模拟考试卷(附答案解析)
- 物业服务考核办法及评分细则(表格模板)
- 2024年春九年级化学下册 第九单元 溶液教案 (新版)新人教版
- DL-T 1071-2023 电力大件运输规范
- 对医院领导的批评意见怎么写更合适范文(6篇)
- 2023年IEC17025检测和校准实验室管理手册
- 环境管理与可持续发展管理制度
- 全流程医院管理制度
- 2024年西安电力高等专科学校单招职业技能测试题库附答案
- 中华财险新疆维吾尔自治区克孜勒苏柯尔克孜自治州商业性防返贫收入保险
评论
0/150
提交评论