版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
西藏自治区日喀则市南木林高级中学2024届数学高二上期末考试模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.如图,过拋物线的焦点的直线与拋物线交于两点,与其准线交于点(点位于之间)且于点且,则等于()A. B.C. D.2.在四棱锥中,底面ABCD是正方形,E为PD中点,若,,,则()A. B.C. D.3.在各项都为正数的等比数列中,首项,前3项和为21,则()A.84 B.72C.33 D.1894.已知等差数列,若,,则()A.1 B.C. D.35.命题:“∃x<1,x2<1”的否定是()A.∀x≥1,x2<1 B.∃x≥1,x2≥1C.∀x<1,x2≥1 D.∃x<1,x2≥16.已知,则点关于平面的对称点的坐标是()A. B.C. D.7.在三棱锥中,,,,若,,则()A. B.C. D.8.双曲线的离心率是,则双曲线的渐近线方程是()A. B.C. D.9.圆与圆公切线的条数为()A.1 B.2C.3 D.410.我国的刺绣有着悠久的历史,如图,(1)(2)(3)(4)为刺绣最简单的四个图案,这些图案都是由小正方形构成,小正方形个数越多刺绣越漂亮.现按同样的规律刺绣(小正方形的摆放规律相同),设第个图形包含个小正方形,则的表达式为()A. B.C. D.11.“”是“函数在上无极值”的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件12.已知函数在处取得极值,则()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.设是定义在上的可导函数,且满足,则不等式解集为_______14.已知正三棱柱中,底面积为,一个侧面的周长为,则正三棱柱外接球的表面积为______.15.某校为了解学生学习的情况,采用分层抽样的方法从高一人、高二人、高三人中,抽取人进行问卷调查.已知高一被抽取的人数为,那么高二被抽取的人数为__.16.《九章算术》中的“商功”篇主要讲述了以立体几何为主的各种形体体积的计算,其中堑堵是指底面为直角三角形的直棱柱.如图,在堑堵,中,M是的中点,,,,若,则_________三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知函数.(1)求函数的极值;(2)是否存在实数,,,对任意的正数,都有成立?若存在,求出,,的所有值;若不存在,请说明理由.18.(12分)某初中学校响应“双减政策”,积极探索减负增质举措,优化作业布置,减少家庭作业时间.现为调查学生的家庭作业时间,随机抽取了名学生,记录他们每天完成家庭作业的时间(单位:分钟),将其分为,,,,,六组,其频率分布直方图如下图:(1)求的值,并估计这名学生完成家庭作业时间的中位数(中位数结果保留一位小数);(2)现用分层抽样的方法从第三组和第五组中随机抽取名学生进行“双减政策”情况访谈,再从访谈的学生中选取名学生进行成绩跟踪,求被选作成绩跟踪的名学生中,第三组和第五组各有名的概率19.(12分)已知函数在处有极值.(1)求的值;(2)求函数在上的最大值与最小值.20.(12分)已知数列是公比为2的等比数列,是与的等差中项(1)求数列的通项公式;(2)若,求数列的前n项和21.(12分)已知函数.(1)当时,求函数的单调区间;(2)若函数在其定义域上是增函数,求实数的取值范围.22.(10分)某港口船舶停靠的方案是先到先停,且每次只能停靠一艘船.(1)若甲乙两艘船同时到达港口,双方约定各派一名代表猜拳:从1,2,3,4,5中各随机选一个数,若两数之和为奇数,则甲先停靠;若两数之和为偶数,则乙先停靠,这种方式对双方是否公平?请说明理由;(2)若甲、乙两船在一昼夜内到达该码头的时刻是等可能的.如果甲船停泊时间为1h,乙船停泊时间为2h,求它们中的任意一艘都不需要等待码头空出的概率.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】由题可得,然后结合条件可得,即求.【详解】设于点,准线交轴于点G,则,又,∴,又于点且,∴BE∥AD,∴,即,∴,∴等于.故选:B.2、C【解析】根据向量线性运算法则计算即可.【详解】故选:C3、A【解析】分析:设等比数列的公比为,根据前三项的和为列方程,结合等比数列中,各项都为正数,解得,从而可以求出的值.详解:设等比数列的公比为,首项为3,前三项的和为,,解之得或,在等比数列中,各项都为正数,公比为正数,舍去),,故选A.点睛:本题考查以一个特殊的等比数列为载体,通过求连续三项和的问题,着重考查了等比数列的通项,等比数列的性质和前项和等知识点,属于简单题.4、C【解析】利用等差数列的通项公式进行求解.【详解】设等差数列的公差为,因为,,所以,解得.故选:C.5、C【解析】将特称命题否定为全称命题即可【详解】根据含有量词的命题的否定,则“∃x<1,x2<1”的否定是“∀x<1,x2≥1”.故选:C.6、C【解析】根据对称性求得坐标即可.【详解】点关于平面的对称点的坐标是,故选:C7、B【解析】根据空间向量的基本定理及向量的运算法则计算即可得出结果.【详解】连接,因为,所以,因为,所以,所以,故选:B8、B【解析】利用双曲线的离心率,以及渐近线中,关系,结合找关系即可【详解】解:,又因为在双曲线中,,所以,故,所以双曲线的渐近线方程为,故选:B9、D【解析】分别求出圆和圆的圆心和半径,判断出两圆的位置关系可得到公切线的条数.【详解】根据题意,圆即,其圆心为,半径;圆即,其圆心为,半径;两圆的圆心距,所以两圆相离,其公切线条数有4条;故选:D.10、D【解析】先分别观察给出正方体的个数为:1,,,,总结一般性的规律,将一般性的数列转化为特殊的数列再求解【详解】解:根据前面四个发现规律:,,,,,累加得:,,故选:【点睛】本题主要考查了归纳推理,属于中档题11、B【解析】根据极值的概念,可知函数在上无极值,则方程的,再根据充分、必要条件判断,即可得到结果.【详解】由题意,可得,若函数在上无极值,所以对于方程,,解得.所以“”是“函数在上无极值”的必要不充分条件.故选:B.12、B【解析】根据极值点处导函数为零可求解.【详解】因为,则,由题意可知.经检验满足题意故选:B二、填空题:本题共4小题,每小题5分,共20分。13、【解析】构造函数,结合题意求得,由此判断出在上递增,由此求解出不等式的解集.【详解】令,,故函数在上单调递增,不等式可化为,则,解得:【点睛】本小题主要考查构造函数法解不等式,考查化归与转化的数学思想方法,属于基础题.14、【解析】首先由条件求出底面边长和高,然后设、分别为上、下底面的的中心,连接,设的中点为,则点为正三棱柱外接球的球心,然后求出的长度即可.【详解】如图所示,设底面边长为,则底面面积为,所以,因此等边三角形的高为:,因为一个侧面的周长为,所以设、分别为上、下底面的的中心,连接,设的中点为则点为正三棱柱外接球的球心,连接、则在直角三角形中,即外接球的半径为,所以外接球的表面积为,故答案为:【点睛】关键点睛:求几何体的外接球半径的关键是根据几何体的性质找出球心的位置.15、【解析】利用分层抽样可求得的值,再利用分层抽样可求得高二被抽取的人数.【详解】高一年级抽取的人数为:人,则,则高二被抽取的人数,故答案为:.16、【解析】建立空间直角坐标系,利用空间向量可以解决问题.【详解】设,如下图所示,建立空间直角坐标系,,,,,,则所以又因为所以故答案为:三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)极小值为:,无极大值(2),,【解析】(1)先求导求单调性,再判断极值点求极值即可;(2)易知,只需要为函数和的公切线即可,求出公切线,代入后分别证明和成立即可.【小问1详解】由题意知:,令,解得,令,解得,所以函数在单调递增,在单调递减,所以为函数的极小值点,即极小值为:,无极大值.【小问2详解】设,易知,所以点是和的公共点,要使成立,只需要为函数和的公切线即可,由(1)知,,所以在点处的切线为:,同理可得在点处的切线为:,由题意知为同一条直线,所以解得,即等价于;下面证明这个式子成立:首先证明等价于,设,所以,恒成立,所以单调递增,易知,所以当时,,当时,,所以在单调递减,在单调递增,所以,故不等式成立,即成立;再证明:等价于,设,所以,所以当时,,当时,,所以在单调递增,在单调递减,所以,故不等式成立,即成立;综上所述,存在,,使得成立.故:,,.【点睛】函数的单调性是函数的重要性质之一,它的应用贯穿于整个高中数学的教学之中.某些数学问题从表面上看似乎与函数的单调性无关,但如果我们能挖掘其内在联系,抓住其本质,那么运用函数的单调性解题,能起到化难为易、化繁为简的作用.因此对函数的单调性进行全面、准确的认识,并掌握好使用的技巧和方法,这是非常必要的.根据题目的特点,构造一个适当的函数,利用它的单调性进行解题,是一种常用技巧.许多问题,如果运用这种思想去解决,往往能获得简洁明快的思路,有着非凡的功效.18、(1);这名学生完成家庭作业时间的中位数约为分钟(2)【解析】(1)由频率分布直方图频率之和为,建立方程求解即可;设中位数为,利用频率分布直方图中位数定义列出方程即可求解;(2)频率分布直方图频率得到第三组和第五组的人数,从而列出所有样本点,再根据题意利用古典概率模型求解即可.【小问1详解】根据频率分布直方图可得:,解得.设中位数为,由题意得,解得所以这名学生完成家庭作业时间的中位数约为分钟【小问2详解】由频率分布直方图知,第三组和第五组的人数之比为,所以分层抽样抽出的人中,第三组和第五组的人数分别为人和人,第三组的名学生记为,,,,第五组的名学生记为,,所以从名学生中抽取名的样本空间,共15个样本点,记事件“名中学生,第三组和第五组各名”则,共有个样本点,所以这名学生中,两组各有名的概率19、(1),;(2)最大值为,最小值为【解析】(1)对函数求导,根据函数在处取极值得出,再由极值为,得出,构造一个关于的二元一次方程组,便可解出的值;(2)由(1)可知,求出,利用导数研究函数在上的单调性,比较极值和端点值的大小,即可得出在上的最大值与最小值.【详解】解:(1)由题可知,,的定义域为,,由于在处有极值,则,即,解得:,,(2)由(1)可知,其定义域是,,令,而,解得,由,得;由,得,则在区间上,,,的变化情况表如下:120单调递减单调递增可得,,,由于,则,所以,函数在区间上的最大值为,最小值为.【点睛】本题考查已知极值求参数值和函数在闭区间内的最值问题,考查利用导函数研究函数在给定闭区间内的单调性,以及通过比较极值和端点值确定函数在闭区间内的最值,考查运算能力.20、(1);(2).【解析】(1)根据给定条件列式求出数列的首项即可作答.(2)由(1)的结论求出,再借助裂项相消法计算作答.【小问1详解】因为数列是公比为2的等比数列,且是与的等差中项,则有,即,解得,所以.【小问2详解】由(1)知,,则,即有,所以.21、(1)在、上递增,在上递减;(2).【解析】【
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024秋新沪科版物理8年级上册教学课件 第6章 熟悉而陌生的力 第4节 探究:滑动摩擦力大小与哪里因素有关
- 2023年智能电能表及配件项目融资计划书
- 2023年原料药机械及设备项目融资计划书
- 养老院老人生活照料管理制度
- 养老院老人健康饮食营养师考核奖惩制度
- 物流整改方案
- 政府还款协议书(2篇)
- 抵押房子合同书(2篇)
- 《豆类坚果类与健康》课件
- 2024年度生态农业地产融资合作开发合同3篇
- 国际发展援助概论智慧树知到期末考试答案2024年
- 突发事件新闻发布会实例分析与研究
- 中石油反恐培训课件
- 电磁感应-2023年高考物理复习练(上海)(解析版)
- 品牌管理 课件 第11章 品牌IP打造
- 小学数学动手能力培养与研究课题研究汇编
- 人教版小学英语一年级起点四年级上册 Fun Time(市一等奖)
- 引导孩子学会适应与调适
- 医院药品目录(很好的)
- 厦门大学2023年826物理化学考研真题(含答案)
- 安徽省县中联盟2023-2024学年高二上学期12月联考数学试题
评论
0/150
提交评论