新疆生产建设兵团五校2024届高二数学第一学期期末质量检测模拟试题含解析_第1页
新疆生产建设兵团五校2024届高二数学第一学期期末质量检测模拟试题含解析_第2页
新疆生产建设兵团五校2024届高二数学第一学期期末质量检测模拟试题含解析_第3页
新疆生产建设兵团五校2024届高二数学第一学期期末质量检测模拟试题含解析_第4页
新疆生产建设兵团五校2024届高二数学第一学期期末质量检测模拟试题含解析_第5页
已阅读5页,还剩14页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

新疆生产建设兵团五校2024届高二数学第一学期期末质量检测模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.直线的倾斜角,则其斜率的取值范围为()A. B.C. D.2.若是函数的一个极值点,则的极大值为()A. B.C. D.3.已知函数的定义域为,其导函数为,若,则下列式子一定成立的是()A. B.C. D.4.已知实数x,y满足,则的取值范围是()A. B.C. D.5.已知函数为偶函数,则在处的切线方程为()A. B.C. D.6.经过直线与直线的交点,且平行于直线的直线方程为()A. B.C. D.7.变量与的数据如表所示,其中缺少了一个数值,已知关于的线性回归方程为,则缺少的数值为()22232425262324▲2628A.24 B.25C.25.5 D.268.已知空间向量,且与垂直,则等于()A.-2 B.-1C.1 D.29.已知圆的圆心到直线的距离为,则圆与圆的位置关系是()A.相交 B.内切C.外切 D.外离10.已知过点的直线l与圆相交于A,B两点,则的取值范围是()A. B.C. D.11.若圆C:上有到的距离为1的点,则实数m的取值范围为()A. B.C. D.12.由下面的条件一定能得出为锐角三角形的是()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知圆被轴截得的弦长为4,被轴分成两部分的弧长之比为1∶2,则圆心的轨迹方程为______,若点,,则周长的最小值为______14.设是数列的前项和,且,,则__________15.命题的否定是____________________.16.椭圆的长轴长为______三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知圆:与x轴负半轴交于点A,过A的直线交抛物线于B,C两点,且.(1)证明:点C的横坐标为定值;(2)若点C在圆内,且过点C与垂直的直线与圆交于D,E两点,求四边形ADBE的面积的最大值.18.(12分)如图,水平桌面上放置一个棱长为4的正方体的水槽,水面高度恰为正方体棱长的一半,在该正方体侧面有一个小孔(小孔的大小忽略不计)E,E点到CD的距离为3,若该正方体水槽绕CD倾斜(CD始终在桌面上).(1)证明图2中的水面也是平行四边形;(2)当水恰好流出时,侧面与桌面所成的角的大小.19.(12分)进入11月份,大学强基计划开始报名,某“五校联盟”统一对五校高三学生进行综合素质测试,在所有参加测试的学生中随机抽取了部分学生的成绩,得到如图2所示的成绩频率分布直方图:(1)估计五校学生综合素质成绩的平均值和中位数;(每组数据用该组的区间中点值表示)(2)某校决定从本校综合素质成绩排名前6名同学中,推荐3人参加强基计划考试,若已知6名同学中有4名理科生,2名文科生,试求这3人中含文科生的概率.20.(12分)某厂有4台大型机器,在一个月中,一台机器至多出现1次故障,出现故障时需1名工人进行维修,且每台机器是否出现故障是相互独立的,每台机器出现故障的概率为(1)若出现故障的机器台数为X,求X的分布列;(2)已知一名工人每月只有维修1台机器的能力,每月需支付给每位工人1万元的工资,每台机器不出现故障或出现故障时能及时维修,都产生5万元的利润,否则将不产生利润.若该厂在雇佣维修工人时,要保证在任何时刻多台机器同时出现故障能及时进行维修的概率不小于90%,雇佣几名工人使该厂每月获利最大?21.(12分)已知圆的圆心在直线上,且过点(1)求圆的方程;(2)已知直线经过原点,并且被圆截得的弦长为2,求直线l的方程.22.(10分)在直三棱柱ABC﹣A1B1C1中,AB⊥AC,AB=AC=2,A1A=4,点D是BC的中点;(I)求异面直线A1B,AC1所成角的余弦值;(II)求直线AB1与平面C1AD所成角的正弦值

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】根据倾斜角和斜率的关系,确定正确选项.【详解】直线的倾斜角为,则斜率为,在上为增函数.由于直线的倾斜角,所以其斜率的取值范围为,即.故选:B【点睛】本小题主要考查倾斜角和斜率的关系,属于基础题.2、D【解析】先对函数求导,由已知,先求出,再令,并判断函数在其左右两边的单调性,从而确定极大值点,然后带入原函数即可完成求解.【详解】因为,,所以,所以,,令,解得或,所以当,,单调递增;时,,单调递减;当,,单调递增,所以的极大值为故选:D3、B【解析】令,求出函数的导数,得到函数的单调性,即可得到,从而求出答案【详解】解:令,则,又不等式恒成立,所以,即,所以在单调递增,故,即,所以,故选:B4、B【解析】实数,满足,通过讨论,得到其图象是椭圆、双曲线的一部分组成的图形,借助图象分析可得的取值就是图象上一点到直线距离范围的2倍,求出切线方程根据平行直线距离公式算出最小值,和最大值的极限值即可得出答案.【详解】因为实数,满足,所以当时,,其图象是位于第一象限,焦点在轴上的双曲线的一部分(含点),当时,其图象是位于第四象限,焦点在轴上的椭圆的一部分,当时,其图象不存在,当时,其图象是位于第三象限,焦点在轴上的双曲线的一部分,作出椭圆和双曲线的图象,其中图象如下:任意一点到直线的距离所以,结合图象可得的范围就是图象上一点到直线距离范围的2倍,双曲线,其中一条渐近线与直线平行,通过图形可得当曲线上一点位于时,取得最小值,无最大值,小于两平行线与之间的距离的倍,设与其图像在第一象限相切于点,由因为或(舍去)所以直线与直线的距离为此时,所以的取值范围是故选:B【点睛】三种距离公式:(1)两点间的距离公式:平面上任意两点间的距离公式为;(2)点到直线的距离公式:点到直线的距离;(3)两平行直线间的距离公式:两条平行直线与间的距离.5、A【解析】根据函数是偶函数可得,可求出,求出函数在处的导数值即为切线斜率,即可求出切线方程.【详解】函数为偶函数,,即,解得,,则,,且,切线方程为,整理得.故选:A.【点睛】本题考查函数奇偶性的应用,考查利用导数求切线方程,属于基础题.6、B【解析】求出两直线的交点坐标,可设所求直线的方程为,将交点坐标代入求得,即可的解.【详解】解:由,解得,即两直线的交点坐标为,设所求直线的方程为,则有,解得,所以所求直线方程为,即.故选:B.7、A【解析】可设出缺少的数值,利用表中的数据,分别表示出、,将样本中心点带入回归方程,即可求得参数.【详解】设缺少的数值为,则,,因为回归直线方程经过样本点的中心,所以,解得.故选:A8、B【解析】直接利用空间向量垂直的坐标运算即可解决.【详解】∵∴∴,解得,故选:B.9、B【解析】求出两圆的圆心与半径,根据两圆的位置关系的判定即可求解.【详解】已知圆的圆心到直线的距离,即,解得或,因为,所以,圆的圆心的坐标为,半径,将圆化为标准方程为,其圆心的坐标为,半径,圆心距,两圆内切,故选:B10、D【解析】经判断点在圆内,与半径相连,所以与垂直时弦长最短,最长为直径【详解】将代入圆方程得:,所以点在圆内,连接,当时,弦长最短,,所以弦长,当过圆心时,最长等于直径8,所以的取值范围是故选:D11、C【解析】利用圆与圆的位置关系进行求解即可.【详解】将圆C的方程化为标准方程得,所以.因为圆C上有到的距离为1的点,所以圆C与圆:有公共点,所以因为,所以,解得,故选:C12、D【解析】对于A,两边平方得,由得,即为钝角;对于B,由正弦定理求出,进而求出,可得结果;对于C,根据平方关系将余弦化为正弦,用正弦定理可将角转化为边,进而可得的值,从而作出判断;对于D,由可得,推出,,,故可知三个内角均为锐角【详解】解:对于A,由,两边平方整理得,,因为,所以,所以,所以,所以为钝角三角形,故A不正确;对于B,由,得,所以,因为,所以,所以或,所以或,所以为直角三角形或钝角三角形,故B不正确;对于C,因为,所以,即,由正弦定理得,由余弦定理得,因为,所以,故三角形为钝角三角形,C不正确;对于D,由可得,因为中最多只有一个钝角,所以,,中最多只有一个为负数,所以,,,所以中三个内角都为锐角,所以为锐角三角形,故D正确;故选:D二、填空题:本题共4小题,每小题5分,共20分。13、①.②.【解析】设,圆半径为,进而根据题意得,,进而得其轨迹方程为双曲线,再根据双曲线的定义,将周长转化为求的最小值,进而求解.【详解】解:如图1,因为圆被轴截得的弦长为4,被轴分成两部分的弧长之比为1∶2,所以,,所以中点,则,,所以,故设,圆半径为,则,,,所以,即所以圆心的轨迹方程为,表示双曲线,焦点为,,如图2,连接,由双曲线的定义得,即,所以周长为,因为,所以周长的最小值为故答案为:;.14、【解析】原式为,整理为:,即,即数列是以-1为首项,-1为公差的等差的数列,所以,即.【点睛】这类型题使用的公式是,一般条件是,若是消,就需当时构造,两式相减,再变形求解;若是消,就需在原式将变形为:,再利用递推求解通项公式.15、##【解析】根据全称量词命题的否定的知识写出正确答案.【详解】全称量词命题的否定是存在量词命题,要注意否定结论,所以命题否定是:故答案为:16、4【解析】把椭圆方程化成标准形式直接计算作答.【详解】椭圆方程化为:,令椭圆长半轴长为a,则,解得,所以椭圆的长轴长为4.故答案为:4三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)证明见解析(2)【解析】(1)设直线方程,与抛物线方程联立,设,,结合,得到,结合根与系数的关系,即可解得答案;(2)根据(1)所设,表示出弦长,再求出,进而表示出四边形ADBE的面积,据此求其最大值,【小问1详解】由题意知点的坐标为,易知直线的斜率存在且不为零,设直线:,,,联立,得,则,即,由韦达定理得,由,即,得,即,代入,得或,又抛物线开口向右,,所以点的横坐标为定值.【小问2详解】由(1)知点的坐标为,故,由(1)知点的坐标为,由点在圆内,得,解得,又,得的斜率,故的方程为,即,故圆心到直线的距离为,由垂径定理得,故,(),当且仅当时,有最大值,所以四边形的面积的最大值为.18、(1)证明见解析(2)【解析】(1)由水的体积得出,进而得出,,从而证明图2中的水面也是平行四边形;(2)在平面内,过点作,交于,由四边形是平行四边形,得出侧面与桌面所成的角即侧面与水面所成的角,再由直角三角形的边角关系得出其夹角.【小问1详解】由题意知,水的体积为,如图所示,设正方体水槽倾斜后,水面分别与棱,,,交于,,,,则,水的体积为,,即,,故四边形为平行四边形,即,且又,,,四边形为平行四边形,即图2中的水面也是平行四边形;【小问2详解】在平面内,过点作,交于,则四边形是平行四边形,,,侧面与桌面所成的角即侧面与水面所成的角,即侧面与平面所成的角,即为所求,而,在中,,侧面与桌面所成角的为19、(1)平均值为74.6分,中位数为75分;(2).【解析】(1)利用频率分布直方图平均数和中位数算法直接计算即可;(2)将学生编号,用枚举法求解即可.【小问1详解】依题意可知:∴综合素质成绩的平均值为74.6分.由图易知∵分数在50~60、60~70、70~80的频率分别为0.12、0.18、0.40,∴中位数在70~80之间,设为,则,解得,∴综合素质成绩的中位数为75分.【小问2详解】设这6名同学分别为,,,,1,2,其中设1,2为文科生,从6人中选出3人,所有的可能的结果为,,,,,,,,,,,,,,,,,,,,共20种,其中含有文科学生的有,,,,,,,,,,,,,,,,共16种,∴含文科生的概率为.20、(1)答案见解析(2)雇佣3名【解析】(1)设出现故障的机器台数为X,由题意知,即可由二项分布求解;(2)设该厂雇佣n名工人,n可取0、1、2、3、4,先求出保证在任何时刻多台机器同时出现故障能及时进行维修的概率不小于90%需要至少3人,再分别计算3人,4人时的获利即可得解.【小问1详解】每台机器运行是否出现故障看作一次实验,在一次试验中,机器出现故障的概率为,4台机器相当于4次独立试验设出现故障的机器台数为X,则,,,,,,则X的分布列为:X01234P【小问2详解】设该厂雇佣n名工人,n可取0、1、2、3、4,设“在任何时刻多台机器同时出现故障能及时进行维修”的概率为,则:n01234P1∵,∴至少要3名工人,才能保证在任何时刻多台机器同时出现故障时能及时进行维修的概率不小于90%当该厂雇佣3名工人时,设该厂获利为Y万元,则Y的所有可能取值为17,12,,,∴Y的分布列为:Y1712P∴,∴该厂获利的均值为16.9万元当该厂雇佣4名工人时,4台机器在任何时刻同时出现故障时能及时进行维修的概率为100%,该厂获利的均值为万元∴若该厂要保证在任何时刻多台机器同时出现故障能及时进行维修的概率不小于90%时,雇佣3名工人使该厂每月获利最大21、(1);(2)或.【解析】(1)根据题意设圆心坐标为,进而得,解得,故圆的方程为(2)分直线的斜率存在和不存在两种情况讨论求解即可.【详解】(1)圆的圆心在直线上,设所求圆心坐标为∵过点,解得∴所求圆的方程为(2)直线经过原点,并且被圆截得的弦长为2①当直线的斜率不存在时,直

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论