新疆阿克苏市农一师中学2023-2024学年高二数学第一学期期末学业水平测试试题含解析_第1页
新疆阿克苏市农一师中学2023-2024学年高二数学第一学期期末学业水平测试试题含解析_第2页
新疆阿克苏市农一师中学2023-2024学年高二数学第一学期期末学业水平测试试题含解析_第3页
新疆阿克苏市农一师中学2023-2024学年高二数学第一学期期末学业水平测试试题含解析_第4页
新疆阿克苏市农一师中学2023-2024学年高二数学第一学期期末学业水平测试试题含解析_第5页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

新疆阿克苏市农一师中学2023-2024学年高二数学第一学期期末学业水平测试试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.圆心在直线上,且过点,并与直线相切的圆的方程为()A. B.C. D.2.执行如图所示的程序框图,输出的结果为()A.4 B.9C.23 D.643.平行六面体的各棱长均相等,,,则异面直线与所成角的余弦值为()A. B.C. D.4.抛物线的准线方程是()A. B.C. D.5.下列结论正确的是()A.若,则 B.若,则C.若,则 D.若,则6.若x,y满足约束条件,则的最大值为()A.2 B.3C.4 D.57.已知命题对任意,总有;是方程的根则下列命题为真命题的是A. B.C. D.8.校庆当天,学校需要在靠墙的位置用围栏围起一个面积为200平方米的矩形场地.用来展示校友的书画作品.靠墙一侧不需要围栏,则围栏总长最小需要()米A.20 B.40C. D.9.已知直线的方程为,则该直线的倾斜角为()A. B.C. D.10.曲线上存在两点A,B到直线到距离等于到的距离,则()A.12 B.13C.14 D.1511.120°的二面角的棱上有A,B两点,直线AC,BD分别在这个二面角的两个半平面内,且都垂直于AB.已知,,,则CD的长为()A. B.C. D.12.已知数列的前项和为,当时,()A.11 B.20C.33 D.35二、填空题:本题共4小题,每小题5分,共20分。13.已知平面,过空间一定点P作一直线l,使得直线l与平面,所成的角都是30°,则这样的直线l有______条14.抛物线的聚焦特点:从抛物线的焦点发出的光经过抛物线反射后,光线都平行于抛物线的对称轴.另一方面,根据光路的可逆性,平行于抛物线对称轴的光线射向抛物线后的反射光线都会汇聚到抛物线的焦点处.已知抛物线,一条平行于抛物线对称轴的光线从点向左发出,先经抛物线反射,再经直线反射后,恰好经过点,则该抛物线的标准方程为___________.15.直线与圆相交于A,B两点,则______16.如图,已知AB,CD分别是圆柱上、下底面圆的直径,且,若该圆柱的底面圆直径是其母线长的2倍,则异面直线AC与BD所成角的余弦值为______三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知定点,圆:,点Q为圆上动点,线段MQ的垂直平分线交NQ于点P,记P的轨迹为曲线C(1)求曲线C的方程;(2)过点M与N作平行直线和,分别交曲线C于点A,B和点D,E,求四边形ABDE面积的最大值18.(12分)已知的展开式中只有第五项的二项式系数最大.(1)求该展开式中有理项的项数;(2)求该展开式中系数最大的项.19.(12分)已知直线l经过两条直线2x﹣y﹣3=0和4x﹣3y﹣5=0的交点,且与直线x+y﹣2=0垂直(1)求直线l的方程;(2)若圆C过点(1,0),且圆心在x轴的正半轴上,直线l被该圆所截得的弦长为,求圆C的标准方程20.(12分)如图1是,,,,分别是边,上两点,且,将沿折起使得,如图2.(1)证明:图2中,平面;(2)图2中,求二面角的正切值.21.(12分)已知函数(1)解不等式;(2)若不等式对恒成立,求实数m的取值范围22.(10分)如图,在多面体中,和均为等边三角形,D是的中点,.(1)证明:;(2)若,求多面体的体积.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】设圆的圆心,表示出半径,再由圆心到切线距离等于半径即可列出方程求得参数及圆的方程.【详解】∵圆的圆心在直线上,∴设圆心为(a,-a),∵圆过,∴半径r=,又∵圆与相切,∴半径r=,则,解得a=2,故圆心为(2,-2),半径为,故方程为.故选:A.2、C【解析】直接按程序框图运行即可求出结果.【详解】初始化数值,,第一次执行循环体,,,1≥4不成立;第二次执行循环体,,,2≥4不成立;第三次执行循环体,,,3≥4不成立;第四次执行循环体,,,4≥4成立;输出故选:C3、B【解析】利用基底向量表示出向量,,即可根据向量夹角公式求出【详解】如图所示:不妨设棱长为1,,,所以==,,,即,故异面直线与所成角的余弦值为故选:B注意事项:1.将答案写在答题卡上2.本卷共10小题,共80分.4、D【解析】将抛物线的方程化为标准方程,可得出该抛物线的准线方程.【详解】抛物线的标准方程为,则,可得,因此,该抛物线的准线方程为.故选:D.5、C【解析】先举例说明ABD不成立,再根据不等式性质说明C成立.【详解】当时,满足,但不成立,所以A错;当时,满足,但不成立,所以B错;当时,满足,但不成立,所以D错;因为所以,又,因此同向不等式相加得,即C对;故选:C【点睛】本题考查不等式性质,考查基本分析判断能力,属基础题.6、C【解析】画出约束条件的可行域,利用目标函数的几何意义即可求解【详解】作出可行域如图所示,把目标函数转化为,平移,经过点时,纵截距最大,所以的最大值为4.故选:C7、A【解析】由绝对值的意义可知命题p为真命题;由于,所以命题q为假命题;因此为假命题,为真命题,“且”字联结的命题只有当两命题都真时才是真命题,所以答案选A8、B【解析】在出矩形中,设,得到,结合基本不等式,即可求解【详解】如图所示,在矩形中,设,则,根据题意,可得矩形围栏总长为因为,可得,当且仅当时,即时,等号成立,即围栏总长最小需要米.故选:B.9、D【解析】设直线倾斜角为,则,即可求出.【详解】设直线的倾斜角为,则,又因为,所以.故选:D.10、D【解析】由题可知A,B为半圆C与抛物线的交点,利用韦达定理及抛物线的定义即求.【详解】由曲线,可得,即,为圆心为,半径为7半圆,又直线为抛物线的准线,点为抛物线的焦点,依题意可知A,B为半圆C与抛物线的交点,由,得,设,则,,∴.故选:D.11、B【解析】由,把展开整理求解【详解】由已知可得:,,,,=41,∴.故选:B12、B【解析】由数列的性质可得,计算可得到答案.【详解】由题意,.故答案为B.【点睛】本题考查了数列的前n项和的性质,属于基础题.二、填空题:本题共4小题,每小题5分,共20分。13、4【解析】设平面,在平面内作于点O,在平面内过点O作,设OM是的角平分线,过棱m上一点P作,则过点O在平面OMQP上存在2条直线l,使得直线l与OB、OA成,直线l与平面且与平面,所成的角都是30°,在的补角一侧也存在2条满足条件的直线l,由此可得答案.【详解】解:设平面,在平面内作于点O,在平面内过点O作,因为平面,所以,设OM是的角平分线,则,过棱m上一点P作,则过点O在平面OMQP上存在2条直线l,使得直线l与OB、OA成,此时直线l与平面且与平面,所成的角都是30°,同理,在的补角一侧也存在2条满足条件的直线l,所以这样的直线l有4条,故答案为:4.14、【解析】根据抛物线的聚焦特点,经过抛物线后经过抛物线焦点,再经直线反射后经过点,则根据反射特点,列出相关方程,解出方程即可.【详解】设光线与抛物线的交点为,抛物线的焦点为,则可得:抛物线的焦点为:则直线的方程为:设直线与直线的交点为,则有:解得:则过点且垂直于的直线的方程为:根据题意可知:点关于直线的对称点在直线上设点,的中点为,则有:直线垂直于,则有:点在直线上,则有:点在直线上,则有:化简得:又故故答案为:【点睛】直线关于直线对称对称,利用中点坐标公式和直线与直线垂直的特点建立方程,根据题意列出隐含的方程是关键15、6【解析】利用弦心距、半径与弦长的几何关系,结合点线距离公式即可求弦长.【详解】由题设,圆心为,则圆心到直线距离为,又圆的半径为,故.故答案为:16、.【解析】利用空间向量夹角公式进行求解即可.【详解】取CD的中点O,以O为原点,以CD所在直线为x轴,以底面内过点O且与CD垂直的直线为y轴,以过点O且与底面垂直的直线为z轴,建立如图所示的空间直角坐标系设,则,,,,,,所以,所以异面直线AC与BD所成角的余弦值为故答案为:三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)6【解析】(1)由椭圆的定义求解(2)设直线方程后与椭圆方程联立,由韦达定理表示弦长,将面积转化为函数后求求解【小问1详解】由题意可得,所以动点P的轨迹是以M,N为焦点,长轴长为4的椭圆,即曲线C的方程为:;【小问2详解】由题意可设的方程为,联立方程得,设,,则由根与系数关系有,所以,根据椭圆的对称性可得,与的距离即为点M到直线的距离,为,所以四边形ABDE面积为,令得,由对勾函数性质可知:当且仅当,即时,四边形ABDE面积取得最大值为6.18、(1);(2)和【解析】(1)先求出,再写出二项式展开式的通项,令即可求解;(2)设第项系数最大,则,即可解得的值,进而可得展开式中系数最大的项.【详解】(1)由题意可得:,得,的展开式通项为,,要求展开式中有理项,只需令,所以所以有理项有5项,(2)设第项系数最大,则,即,即,解得:,因为,所以或所以,所以展开式中系数最大的项为和.【点睛】解二项式的题关键是求二项式展开式的通项,求有理项需要让的指数位置是整数,求展开式中系数最大的项需要满足第项的系数大于等于第项的系数,第项的系数大于等于第项的系数,属于中档题19、(1)(2)【解析】(1)先求得直线和直线的交点坐标,再用点斜式求得直线的方程.(2)设圆的标准方程为,根据已知条件列方程组,求得,由此求得圆的标准方程.【小问1详解】.直线的斜率为,所以直线的斜率为,所以直线的方程为.【小问2详解】设圆的标准方程为,则,所以圆的标准方程为.20、(1)证明见解析(2)【解析】(1)、利用线面垂直的判定,及线面垂直的性质即可证明;(2)、建立空间直角坐标系,分别求出平面、平面的法向量,利用求出两平面所成角的余弦值,进而求出求二面角的正切值.【小问1详解】由已知得:,平面,又平面,在中,,由余弦定理得:,,即,平面.【小问2详解】由(1)知:平面,以为坐标原点,建立如图所示的空间直角坐标系,则,,,设平面的法向量为,平面的法向量为,则与,即与,..,观察可知二面角为钝二面角,二面角的正切值为.21、(1)(2)【解析】(1)移项,两边平方即可获解;(2)利用绝对值不等式即可.【小问1

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论