人教版初一数学下册期末压轴题试题(带答案)-解析_第1页
人教版初一数学下册期末压轴题试题(带答案)-解析_第2页
人教版初一数学下册期末压轴题试题(带答案)-解析_第3页
人教版初一数学下册期末压轴题试题(带答案)-解析_第4页
人教版初一数学下册期末压轴题试题(带答案)-解析_第5页
已阅读5页,还剩40页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

一、解答题1.如图1,在平面直角坐标系中,点O是坐标原点,边长为2的正方形ABCD(点D与点O重合)和边长为4的正方形EFGH的边CO和GH都在x轴上,且点H坐标为(7,0).正方形ABCD以3个单位长度/秒的速度沿着x轴向右运动,记正方形ABCD和正方形EFGH重叠部分的面积为S,假设运动时间为t秒,且t<4.(1)点F的坐标为;(2)如图2,正方形ABCD向右运动的同时,动点P在线段FE上,以1个单位长度/秒的速度从F到E运动.连接AP,AE.①求t为何值时,AP所在直线垂直于x轴;②求t为何值时,S=S△APE.2.如图,,点A、B分别在直线MN、GH上,点O在直线MN、GH之间,若,.(1)=;(2)如图2,点C、D是、角平分线上的两点,且,求的度数;(3)如图3,点F是平面上的一点,连结FA、FB,E是射线FA上的一点,若,,且,求n的值.3.如图,已知直线射线,.是射线上一动点,过点作交射线于点,连接.作,交直线于点,平分.(1)若点,,都在点的右侧.①求的度数;②若,求的度数.(不能使用“三角形的内角和是”直接解题)(2)在点的运动过程中,是否存在这样的偕形,使?若存在,直接写出的度数;若不存在.请说明理由.4.已知,AB∥CD.点M在AB上,点N在CD上.(1)如图1中,∠BME、∠E、∠END的数量关系为:;(不需要证明)如图2中,∠BMF、∠F、∠FND的数量关系为:;(不需要证明)(2)如图3中,NE平分∠FND,MB平分∠FME,且2∠E+∠F=180°,求∠FME的度数;(3)如图4中,∠BME=60°,EF平分∠MEN,NP平分∠END,且EQ∥NP,则∠FEQ的大小是否发生变化,若变化,请说明理由,若不变化,求出∠FEQ的度数.5.如图,直线,点是、之间(不在直线,上)的一个动点.(1)如图1,若与都是锐角,请写出与,之间的数量关系并说明理由;(2)把直角三角形如图2摆放,直角顶点在两条平行线之间,与交于点,与交于点,与交于点,点在线段上,连接,有,求的值;(3)如图3,若点是下方一点,平分,平分,已知,求的度数.6.已知AB//CD.(1)如图1,E为AB,CD之间一点,连接BE,DE,得到∠BED.求证:∠BED=∠B+∠D;(2)如图,连接AD,BC,BF平分∠ABC,DF平分∠ADC,且BF,DF所在的直线交于点F.①如图2,当点B在点A的左侧时,若∠ABC=50°,∠ADC=60°,求∠BFD的度数.②如图3,当点B在点A的右侧时,设∠ABC=α,∠ADC=β,请你求出∠BFD的度数.(用含有α,β的式子表示)7.先阅读然后解答提出的问题:设a、b是有理数,且满足,求ba的值.解:由题意得,因为a、b都是有理数,所以a﹣3,b+2也是有理数,由于是无理数,所以a-3=0,b+2=0,所以a=3,b=﹣2,所以.问题:设x、y都是有理数,且满足,求x+y的值.8.阅读材料:求值:,解答:设,将等式两边同时乘2得:,将得:,即.请你类比此方法计算:.其中n为正整数9.定义:对任意一个两位数,如果满足个位数字与十位数字互不相同,且都不为零,那么称这个两位数为“奇异数”.将一个“奇异数”的个位数字与十位数字对调后得到一个新的两位数,把这个新两位数与原两位数的和与的商记为例如:,对调个位数字与十位数字后得到新两位数是,新两位数与原两位数的和为,和与的商为,所以根据以上定义,完成下列问题:(1)填空:①下列两位数:,,中,“奇异数”有.②计算:..(2)如果一个“奇异数”的十位数字是,个位数字是,且请求出这个“奇异数”(3)如果一个“奇异数”的十位数字是,个位数字是,且满足,请直接写出满足条件的的值.10.阅读型综合题对于实数我们定义一种新运算(其中均为非零常数),等式右边是通常的四则运算,由这种运算得到的数我们称之为线性数,记为,其中叫做线性数的一个数对.若实数都取正整数,我们称这样的线性数为正格线性数,这时的叫做正格线性数的正格数对.(1)若,则,;(2)已知,.若正格线性数,(其中为整数),问是否有满足这样条件的正格数对?若有,请找出;若没有,请说明理由.11.观察下列各式,并用所得出的规律解决问题:(1),,,……,,,……由此可见,被开方数的小数点每向右移动______位,其算术平方根的小数点向______移动______位.(2)已知,,则_____;______.(3),,,……小数点的变化规律是_______________________.(4)已知,,则______.12.阅读下面的文字,解答问题:大家知道是无理数,而无理数是无限不循环小数,因此的小数部分我们不可能全部写出来,而<2于是可用来表示的小数部分.请解答下列问题:(1)的整数部分是_______,小数部分是_________;(2)如果的小数部分为的整数部分为求的值;(3)已知:其中是整数,且求的平方根.13.如图,在平面直角坐标系中,点O为坐标原点,三角形OAB的边OA、OB分别在x轴正半轴上和y轴正半轴上,A(a,0),a是方程的解,且△OAB的面积为6.(1)求点A、B的坐标;(2)将线段OA沿轴向上平移后得到PQ,点O、A的对应点分别为点P和点Q(点P与点B不重合),设点P的纵坐标为t,△BPQ的面积为S,请用含t的式子表示S;(3)在(2)的条件下,设PQ交线段AB于点K,若PK=,求t的值及△BPQ的面积.14.如图,已知//,点是射线上一动点(与点不重合),分别平分和,分别交射线于点.(1)当时,的度数是_______;(2)当,求的度数(用的代数式表示);(3)当点运动时,与的度数之比是否随点的运动而发生变化?若不变化,请求出这个比值;若变化,请写出变化规律.(4)当点运动到使时,请直接写出的度数.15.如图,A点的坐标为(0,3),B点的坐标为(﹣3,0),D为x轴上的一个动点且不与B,O重合,将线段AD绕点A逆时针旋转90°得线段AE,使得AE⊥AD,且AE=AD,连接BE交y轴于点M.(1)如图,当点D在线段OB的延长线上时,①若D点的坐标为(﹣5,0),求点E的坐标.②求证:M为BE的中点.③探究:若在点D运动的过程中,的值是否是定值?如果是,请求出这个定值;如果不是,请说明理由.(2)请直接写出三条线段AO,DO,AM之间的数量关系(不需要说明理由).16.如果x是一个有理数,我们定义x表示不小于x的最小整数.如3.24,2.62,55,66.由定义可知,任意一个有理数都能写成xxb的形式(0≤b<1).(1)直接写出x与x,x1的大小关系;提示1:用“不完全归纳法”推导x与x,x1的大小关系;提示2:用“代数推理”的方法推导x与x,x1的大小关系.(2)根据(1)中的结论解决下列问题:①直接写出满足3m74的m取值范围;②直接写出方程3.5n22n1的解..17.在平面直角坐标系中描出下列两组点,分别将每组里的点用线段依次连接起来.第一组:、;第二组:、.(1)线段与线段的位置关系是;(2)在(1)的条件下,线段、分别与轴交于点,.若点为射线上一动点(不与点,重合).①当点在线段上运动时,连接、,补全图形,用等式表示、、之间的数量关系,并证明.②当与面积相等时,求点的坐标.18.在平面直角坐标系中,,满足.(1)直接写出、的值:;;(2)如图1,若点满足的面积等于6,求的值;(3)设线段交轴于C,动点E从点C出发,在轴上以每秒1个单位长度的速度向下运动,动点F从点出发,在轴上以每秒2个单位长度的速度向右运动,若它们同时出发,运动时间为秒,问为何值时,有?请求出的值.19.两个两位数的和是68,在较大的两位数的右边接着写较小的两位数,得到一个四位数;在较大的两位数的左边写上较小的两位数,也得到一个四位数.已知前一个四位数比后一个四位数大990.若设较大的两位数为x,较小的两位数为y,回答下列问题:(1)可得到下列哪一个方程组?A.B.C.D.(2)解所确定的方程组,求这两个两位数.20.(阅读感悟)一些关于方程组的问题,若求的结果不是每一个未知数的值,而是关于未知数的式子的值,如以下问题:已知实数,满足①,②,求和的值.本题的常规思路是将①②两式联立组成方程组,解得,的值再代入欲求值的式子得到答案,常规思路运算量比较大.其实,仔细观察两个方程未知数的系数之间的关系,本题还可以通过适当变形整体求得式子的值,如由①-②可得,由①+②×2可得.这样的解题思想就是通常所说的“整体思想”.(解决问题)(1)已知二元一次方程组,则,.(2)某班开展安全教育知识竞赛需购买奖品,买5支铅笔、3块橡皮、2本日记本共需32元,买9支铅笔、5块橡皮、3本日记本共需58元,则购买20支铅笔、20块橡皮、20本日记本共需多少元?(3)对于实数,,定义新运算:,其中,,是常数,等式右边是通常的加法和乘法运算.已知,,求的值.21.某校规划在一块长AD为18m、宽AB为13m的长方形场地ABCD上,设计分别与AD,AB平行的横向通道和纵向通道,其余部分铺上草皮,如图所示,若设计三条通道,一条横向,两条纵向,且它们的宽度相等,其余六块草坪相同,其中一块草坪两边之比AM∶AN=8∶9,问通道的宽是多少?22.在平面直角坐标系中,点A,B的坐标分别为A(a,0),B(b,0),且a,b满足|a+b﹣2|+=0,现同时将点A,B分别向右平移1个单位,再向上平移2个单位,分别得到点A,B的对应点为C,D.(1)请直接写出A、B、C、D四点的坐标.(2)点E在坐标轴上,且S△BCE=S四边形ABDC,求满足条件的点E的坐标.(3)点P是线段BD上的一个动点,连接PC,PO,当点P在线段BD上移动时(不与B,D重合)求:的值.23.已知,在平面直角坐标系中,三角形三个顶点的坐标分别为,,,轴,且、满足.(1)则______;______;______;(2)如图1,在轴上是否存在点,使三角形的面积等于三角形的面积?若存在,请求出点的坐标;若不存在,请说明理由;(3)如图2,连接交于点,点在轴上,若三角形的面积小于三角形的面积,直接写出的取值范围是______.24.阅读材料:形如的不等式,我们就称之为双连不等式.求解双连不等式的方法一,转化为不等式组求解,如;方法二,利用不等式的性质直接求解,双连不等式的左、中、右同时减去1,得,然后同时除以2,得.解决下列问题:(1)请你写一个双连不等式并将它转化为不等式组;(2)利用不等式的性质解双连不等式;(3)已知,求的整数值.25.小语爸爸开了一家茶叶专卖店,包装设计专业毕业的小语为爸爸设计了一款纸质长方体茶叶包包装盒(纸片厚度不计).如图,阴影部分是裁剪掉的部分,沿图中实线折叠做成的长方体纸盒的上下底面是正方形,有三处长方形形状的“接口”用来折叠后粘贴或封盖.(1)若小语用长,宽的长方形纸片,恰好能做成一个符合要求的包装盒,盒高是盒底边长的倍,三处“接口”的宽度相等.则该茶叶盒的容积是多少?(2)小语爸爸的茶叶专卖店以每盒元购进一批茶叶,按进价增加作为售价,第一个月由于包装粗糙,只售出不到一半但超过三分之一的量;第二个月采用了小语的包装后,马上售完了余下的茶叶,但每盒成本增加了元,售价仍不变,已知在整个买卖过程中共盈利元,求这批茶叶共进了多少盒?26.在平面直角坐标系中,点,,的坐标分别为,,,且,满足方程为二元一次方程.(1)求,的坐标.(2)若点为轴正半轴上的一个动点.①如图1,当时,与的平分线交于点,求的度数;②如图2,连接,交轴于点.若成立.设动点的坐标为,求的取值范围.27.若关于x的方程ax+b=0(a≠0)的解与关于y的方程cy+d=0(c≠0)的解满足﹣1≤x﹣y≤1,则称方程ax+b=0(a≠0)与方程cy+d=0(c≠0)是“友好方程”.例如:方程2x﹣1=0的解是x=0.5,方程y﹣1=0的解是y=1,因为﹣1≤x﹣y≤1,方程2x﹣1=0与方程y﹣1=0是“友好方程”.(1)请通过计算判断方程2x﹣9=5x﹣2与方程5(y﹣1)﹣2(1﹣y)=﹣34﹣2y是不是“友好方程”.(2)若关于x的方程3x﹣3+4(x﹣1)=0与关于y的方程+y=2k+1是“友好方程”,请你求出k的最大值和最小值.28.对,定义一种新的运算,规定:(其中).已知,.(1)求、的值;(2)若,解不等式组.29.如图1,在平面直角坐标系中,,且满足,过作轴于.(1)求的面积.(2)若过作交轴于,且分别平分,如图2,求的度数.(3)在轴上存在点使得和的面积相等,请直接写出点坐标.30.学校美术组要去商店购买铅笔和橡皮,若购买60支铅笔和30块橡皮,则需按零售价购买,共支付30元;若购买90支铅笔和60块橡皮,则可按批发价购买,共支付40.5元.已知每支铅笔的批发价比零售价低0.05元,每块橡皮的批发价比零售价低0.10元.(1)求每支铅笔和每块橡皮的批发价各是多少元?(2)小亮同学用4元钱在这家商店按零售价买同样的铅笔和橡皮(两样都要买,4元钱恰好用完),共有哪几种购买方案?【参考答案】***试卷处理标记,请不要删除一、解答题1.(1)(3,4);(2)①t=时,AP所在直线垂直于x轴;②当t为或时,S=S△APE.【分析】(1)根据直角坐标系得出点F的坐标即可;(2)①根据AP所在直线垂直于x轴,得出关于t的方程,解答即可;②分和两种情况,利用面积公式列出方程即可求解.【详解】(1)由直角坐标系可得:F坐标为:(3,4);故答案为:(3,4);(2)①要使AP所在直线垂直于x轴.如图1,只需要Px=Ax,则t+3=3t,解得:,所以即时,AP所在直线垂直于x轴;②由题意知,OH=7,所以当时,点D与点H重合,所以要分以下两种情况讨论:情况一:当时,GD=3t﹣3,PF=t,PE=4﹣t,∵S=S△APE,∴BC×GD=,即:2×(3t﹣3)=,解得:;情况二:当时,如图2,HD=3t﹣7,PF=t,PE=4﹣t,∵S=S△APE,∴BC×CH=,即:2×[2﹣(3t﹣7)]=,解得:,综上所述,当t为或时,S=S△APE.【点睛】本题考查了平面直角坐标系中点的移动,一元一次方程的应用等问题,理解题意,分类讨论是解题关键.2.(1)100;(2)75°;(3)n=3.【分析】(1)如图:过O作OP//MN,由MN//OP//GH得∠NAO+∠POA=180°,∠POB+∠OBH=180°,即∠NAO+∠AOB+∠OBH=360°,即可求出∠AOB;(2)如图:分别延长AC、CD交GH于点E、F,先根据角平分线求得,再根据平行线的性质得到;进一步求得,,然后根据三角形外角的性质解答即可;(3)设BF交MN于K,由∠NAO=116°,得∠MAO=64°,故∠MAE=,同理∠OBH=144°,∠HBF=n∠OBF,得∠FBH=,从而,又∠FKN=∠F+∠FAK,得,即可求n.【详解】解:(1)如图:过O作OP//MN,∵MN//GHl∴MN//OP//GH∴∠NAO+∠POA=180°,∠POB+∠OBH=180°∴∠NAO+∠AOB+∠OBH=360°∵∠NAO=116°,∠OBH=144°∴∠AOB=360°-116°-144°=100°;(2)分别延长AC、CD交GH于点E、F,∵AC平分且,∴,又∵MN//GH,∴;∵,∵BD平分,∴,又∵∴;∴;(3)设FB交MN于K,∵,则;∴∵,∴,,在△FAK中,,∴,∴.经检验:是原方程的根,且符合题意.【点睛】本题主要考查平行线的性质及应用,正确作出辅助线、构造平行线、再利用平行线性质进行求解是解答本题的关键.3.(1)①35°;(2)55°;(2)存在,或【分析】(1)①依据平行线的性质以及角平分线的定义,即可得到∠PCG的度数;②依据平行线的性质以及角平分线的定义,即可得到∠ECG=∠GCF=20°,再根据PQ∥CE,即可得出∠CPQ=∠ECP=60°;(2)设∠EGC=3x,∠EFC=2x,则∠GCF=3x-2x=x,分两种情况讨论:①当点G、F在点E的右侧时,②当点G、F在点E的左侧时,依据等量关系列方程求解即可.【详解】解:(1)①∵AB∥CD,∴∠CEB+∠ECQ=180°,∵∠CEB=110°,∴∠ECQ=70°,∵∠PCF=∠PCQ,CG平分∠ECF,∴∠PCG=∠PCF+∠FCG=∠QCF+∠FCE=∠ECQ=35°;②∵AB∥CD,∴∠QCG=∠EGC,∵∠QCG+∠ECG=∠ECQ=70°,∴∠EGC+∠ECG=70°,又∵∠EGC-∠ECG=30°,∴∠EGC=50°,∠ECG=20°,∴∠ECG=∠GCF=20°,∠PCF=∠PCQ=(70°−40°)=15°,∵PQ∥CE,∴∠CPQ=∠ECP=∠ECQ-∠PCQ=70°-15°=55°.(2)52.5°或7.5°,设∠EGC=3x°,∠EFC=2x°,①当点G、F在点E的右侧时,∵AB∥CD,∴∠QCG=∠EGC=3x°,∠QCF=∠EFC=2x°,则∠GCF=∠QCG-∠QCF=3x°-2x°=x°,∴∠PCF=∠PCQ=∠FCQ=∠EFC=x°,则∠ECG=∠GCF=∠PCF=∠PCD=x°,∵∠ECD=70°,∴4x=70°,解得x=17.5°,∴∠CPQ=3x=52.5°;②当点G、F在点E的左侧时,反向延长CD到H,∵∠EGC=3x°,∠EFC=2x°,∴∠GCH=∠EGC=3x°,∠FCH=∠EFC=2x°,∴∠ECG=∠GCF=∠GCH-∠FCH=x°,∵∠CGF=180°-3x°,∠GCQ=70°+x°,∴180-3x=70+x,解得x=27.5,∴∠FCQ=∠ECF+∠ECQ=27.5°×2+70°=125°,∴∠PCQ=∠FCQ=62.5°,∴∠CPQ=∠ECP=62.5°-55°=7.5°,【点睛】本题主要考查了平行线的性质,掌握两直线平行,同旁内角互补;两直线平行,内错角相等是解题的关键.4.(1)∠BME=∠MEN﹣∠END;∠BMF=∠MFN+∠FND;(2)120°;(3)不变,30°【分析】(1)过E作EH∥AB,易得EH∥AB∥CD,根据平行线的性质可求解;过F作FH∥AB,易得FH∥AB∥CD,根据平行线的性质可求解;(2)根据(1)的结论及角平分线的定义可得2(∠BME+∠END)+∠BMF-∠FND=180°,可求解∠BMF=60°,进而可求解;(3)根据平行线的性质及角平分线的定义可推知∠FEQ=∠BME,进而可求解.【详解】解:(1)过E作EH∥AB,如图1,∴∠BME=∠MEH,∵AB∥CD,∴HE∥CD,∴∠END=∠HEN,∴∠MEN=∠MEH+∠HEN=∠BME+∠END,即∠BME=∠MEN﹣∠END.如图2,过F作FH∥AB,∴∠BMF=∠MFK,∵AB∥CD,∴FH∥CD,∴∠FND=∠KFN,∴∠MFN=∠MFK﹣∠KFN=∠BMF﹣∠FND,即:∠BMF=∠MFN+∠FND.故答案为∠BME=∠MEN﹣∠END;∠BMF=∠MFN+∠FND.(2)由(1)得∠BME=∠MEN﹣∠END;∠BMF=∠MFN+∠FND.∵NE平分∠FND,MB平分∠FME,∴∠FME=∠BME+∠BMF,∠FND=∠FNE+∠END,∵2∠MEN+∠MFN=180°,∴2(∠BME+∠END)+∠BMF﹣∠FND=180°,∴2∠BME+2∠END+∠BMF﹣∠FND=180°,即2∠BMF+∠FND+∠BMF﹣∠FND=180°,解得∠BMF=60°,∴∠FME=2∠BMF=120°;(3)∠FEQ的大小没发生变化,∠FEQ=30°.由(1)知:∠MEN=∠BME+∠END,∵EF平分∠MEN,NP平分∠END,∴∠FEN=∠MEN=(∠BME+∠END),∠ENP=∠END,∵EQ∥NP,∴∠NEQ=∠ENP,∴∠FEQ=∠FEN﹣∠NEQ=(∠BME+∠END)﹣∠END=∠BME,∵∠BME=60°,∴∠FEQ=×60°=30°.【点睛】本题主要考查平行线的性质及角平分线的定义,作平行线的辅助线是解题的关键.5.(1)见解析;(2);(3)75°【分析】(1)根据平行线的性质、余角和补角的性质即可求解.(2)根据平行线的性质、对顶角的性质和平角的定义解答即可.(3)根据平行线的性质和角平分线的定义以及三角形内角和解答即可.【详解】解:(1)∠C=∠1+∠2,证明:过C作l∥MN,如下图所示,∵l∥MN,∴∠4=∠2(两直线平行,内错角相等),∵l∥MN,PQ∥MN,∴l∥PQ,∴∠3=∠1(两直线平行,内错角相等),∴∠3+∠4=∠1+∠2,∴∠C=∠1+∠2;(2)∵∠BDF=∠GDF,∵∠BDF=∠PDC,∴∠GDF=∠PDC,∵∠PDC+∠CDG+∠GDF=180°,∴∠CDG+2∠PDC=180°,∴∠PDC=90°-∠CDG,由(1)可得,∠PDC+∠CEM=∠C=90°,∴∠AEN=∠CEM,∴,(3)设BD交MN于J.∵BC平分∠PBD,AM平分∠CAD,∠PBC=25°,∴∠PBD=2∠PBC=50°,∠CAM=∠MAD,∵PQ∥MN,∴∠BJA=∠PBD=50°,∴∠ADB=∠AJB-∠JAD=50°-∠JAD=50°-∠CAM,由(1)可得,∠ACB=∠PBC+∠CAM,∴∠ACB+∠ADB=∠PBC+∠CAM+50°-∠CAM=25°+50°=75°.【点睛】本题考查了平行线的性质、余角和补角的性质,解题的关键是根据平行找出角度之间的关系.6.(1)见解析;(2)55°;(3)【分析】(1)根据平行线的判定定理与性质定理解答即可;(2)①如图2,过点作,当点在点的左侧时,根据,,根据平行线的性质及角平分线的定义即可求的度数;②如图3,过点作,当点在点的右侧时,,,根据平行线的性质及角平分线的定义即可求出的度数.【详解】解:(1)如图1,过点作,则有,,,,;(2)①如图2,过点作,有.,...即,平分,平分,,,.答:的度数为;②如图3,过点作,有.,,...即,平分,平分,,,.答:的度数为.【点睛】本题考查了平行线的判定与性质,解决本题的关键是熟练掌握平行线的判定与性质.7.7或-1.【分析】根据题目中给出的方法,对所求式子进行变形,求出x、y的值,进而可求x+y的值.【详解】解:∵,∴,∴=0,=0∴x=±4,y=3当x=4时,x+y=4+3=7当x=-4时,x+y=-4+3=-1∴x+y的值是7或-1.【点睛】本题考查实数的运算,解题的关键是弄清题中给出的解答方法,然后运用类比的思想进行解答.8.(1);(2).【解析】【分析】设,两边乘以2后得到关系式,与已知等式相减,变形即可求出所求式子的值;同理即可得到所求式子的值.【详解】解:设,将等式两边同时乘2得:,将下式减去上式得:,即,则;设,两边同时乘3得:,得:,即,则.【点睛】本题考查了规律型:数字的变化类,有理数的混合运算,解题的关键是明确题意,运用题目中的解题方法,运用类比的数学思想解答问题.9.(1)①,②,;(2);(3)【分析】(1)①由“奇异数”的定义可得;②根据定义计算可得;(2)由f(10m+n)=m+n,可求k的值,即可求b;(3)根据题意可列出等式,可求出x、y的值,即可求的值.【详解】解:(1)①∵对任意一个两位数a,如果a满足个位数字与十位数字互不相同,且都不为零,那么称这个两位数为“奇异数”.∴“奇异数”为21;②f(15)=(15+51)÷11=6,f(10m+n)=(10m+n+10n+m)÷11=m+n;(2)∵f(10m+n)=m+n,且f(b)=8∴k+2k-1=8∴k=3∴b=10×3+2×3-1=35;(3)根据题意有∵∴∴∵x、y为正数,且x≠y∴x=6,y=5∴a=6×10+5=65故答案为:(1)①,②,;(2);(3)【点睛】本题考查了新定义下的实数运算,能理解“奇异数”定义是本题的关键.10.(1)5,3;(2)有正格数对,正格数对为【分析】(1)根据定义,直接代入求解即可;(2)将代入求出b的值,再将代入,表示出kx,再根据题干分析即可.【详解】解:(1)∵∴5,3故答案为:5,3;(2)有正格数对.将代入,得出,,解得,,∴,则∴∵,为正整数且为整数∴,,,∴正格数对为:.【点睛】本题考查的知识点是实数的运算,理解新定义是解此题的关键.11.(1)两;右;一;(2)12.25;0.3873;(3)被开方数的小数点向右(左)移三位,其立方根的小数点向右(左)移动一位;(4)-0.01【分析】(1)观察已知等式,得到一般性规律,写出即可;(2)利用得出的规律计算即可得到结果;(3)归纳总结得到规律,写出即可;(4)利用得出的规律计算即可得到结果.【详解】解:(1),,,……,,,……由此可见,被开方数的小数点每向右移动两位,其算术平方根的小数点向右移动一位.故答案为:两;右;一;(2)已知,,则;;故答案为:12.25;0.3873;(3),,,……小数点的变化规律是:被开方数的小数点向右(左)移三位,其立方根的小数点向右(左)移动一位;(4)∵,,∴,∴,∴y=-0.01.【点睛】此题考查了立方根,以及算术平方根,弄清题中的规律是解本题的关键.12.(1)4,-4;(2)1;(2)±12.【分析】(1)先估算出的范围,即可得出答案;(2)先估算出、的范围,求出a、b的值,再代入求出即可;(3)先估算出的范围,求出x、y的值,再代入求出即可.【详解】解:(1)∵4<<5,∴的整数部分是4,小数部分是-4,故答案为4,-4;(2)∵2<<3,∴a=-2,∵3<<4,∴b=3,∴a+b-=-2+3-=1;(3)∵100<110<121,∴10<<11,∴110<100+<111,∵100+=x+y,其中x是整数,且0<y<1,∴x=110,y=100+-110=-10,∴x++24-y=110++24-+10=144,x++24-y的平方根是±12.【点睛】本题考查了估算无理数的大小,能估算出、、、的范围是解此题的关键.13.(1)B(0,3);(2)S=(3)4【分析】(1)解方程求出a的值,利用三角形的面积公式构建方程求出b的值即可解决问题;(2)分两种情形分别求解:当点P在线段OB上时,当点P在线段OB的延长线上时;(3)过点K作KH⊥OA用H.根据S△BPK+S△AKH=S△AOB-S长方形OPKH,构建方程求出t,即可解决问题;【详解】解:(1)∵,∴2(a+2)-3(a-2)=6,∴-a+4=0,∴a=4,∴A(4,0),∵S△OAB=6,∴•4•OB=6,∴OB=3,∴B(0,3).(2)当点P在线段OB上时,S=•PQ•PB=×4×(3-t)=-2t+6.当点P在线段OB的延长线上时,S=•PQ•PB=×4×(t-3)=2t-6.综上所述,S=.(3)过点K作KH⊥OA用H.∵S△BPK+S△AKH=S△AOB-S长方形OPKH,∴PK•BP+AH•KH=6-PK•OP,∴××(3-t)+(4-)•t=6-•t,解得t=1,∴S△BPQ=-2t+6=4.【点睛】本题考查三角形综合题,一元一次方程、三角形的面积、平移变换等知识,解题的关键是学会利用参数构建方程解决问题,属于中考压轴题.14.(1)120°;(2)90°-x°;(3)不变,;(4)45°【分析】(1)由平行线的性质:两直线平行同旁内角互补可得;(2)由平行线的性质可得∠ABN=180°-x°,根据角平分线的定义知∠ABP=2∠CBP、∠PBN=2∠DBP,可得2∠CBP+2∠DBP=180°-x°,即∠CBD=∠CBP+∠DBP=90°-x°;(3)由AM∥BN得∠APB=∠PBN、∠ADB=∠DBN,根据BD平分∠PBN知∠PBN=2∠DBN,从而可得∠APB:∠ADB=2:1;(4)由AM∥BN得∠ACB=∠CBN,当∠ACB=∠ABD时有∠CBN=∠ABD,得∠ABC+∠CBD=∠CBD+∠DBN,即∠ABC=∠DBN,根据角平分线的定义可得∠ABP=∠PBN=∠ABN=2∠DBN,由平行线的性质可得∠A+∠ABN=90°,即可得出答案.【详解】解:(1)∵AM∥BN,∠A=60°,∴∠A+∠ABN=180°,∴∠ABN=120°;(2)∵AM∥BN,∴∠ABN+∠A=180°,∴∠ABN=180°-x°,∴∠ABP+∠PBN=180°-x°,∵BC平分∠ABP,BD平分∠PBN,∴∠ABP=2∠CBP,∠PBN=2∠DBP,∴2∠CBP+2∠DBP=180°-x°,∴∠CBD=∠CBP+∠DBP=(180°-x°)=90°-x°;(3)不变,∠ADB:∠APB=.∵AM∥BN,∴∠APB=∠PBN,∠ADB=∠DBN,∵BD平分∠PBN,∴∠PBN=2∠DBN,∴∠APB:∠ADB=2:1,∴∠ADB:∠APB=;(4)∵AM∥BN,∴∠ACB=∠CBN,当∠ACB=∠ABD时,则有∠CBN=∠ABD,∴∠ABC+∠CBD=∠CBD+∠DBN,∴∠ABC=∠DBN,∵BC平分∠ABP,BD平分∠PBN,∴∠ABP=2∠ABC,∠PBN=2∠DBN,∴∠ABP=∠PBN=2∠DBN=∠ABN,∵AM∥BN,∴∠A+∠ABN=180°,∴∠A+∠ABN=90°,∴∠A+2∠DBN=90°,∴∠A+∠DBN=(∠A+2∠DBN)=45°.【点睛】本题主要考查平行线的性质和角平分线的定义,熟练掌握平行线的性质是解题的关键.15.(1)①E(3,﹣2)②见解析;③,理由见解析;(2)OD+OA=2AM或OA﹣OD=2AM【分析】(1)①过点E作EH⊥y轴于H.证明△DOA≌△AHE(AAS)可得结论.②证明△BOM≌△EHM(AAS)可得结论.③是定值,证明△BOM≌△EHM可得结论.(2)根据点D在点B左侧和右侧分类讨论,分别画出对应的图形,根据全等三角形的判定及性质即可分别求出结论.【详解】解:(1)①过点E作EH⊥y轴于H.∵A(0,3),B(﹣3,0),D(﹣5,0),∴OA=OB=3,OD=5,∵∠AOD=∠AHE=∠DAE=90°,∴∠DAO+∠EAH=90°,∠EAH+∠AEH=90°,∴∠DAO=∠AEH,∴△DOA≌△AHE(AAS),∴AH=OD=5,EH=OA=3,∴OH=AH﹣OA=2,∴E(3,﹣2).②∵EH⊥y轴,∴∠EHO=∠BOH=90°,∵∠BMO=∠EMH,OB=EH=3,∴△BOM≌△EHM(AAS),∴BM=EM.③结论:=.理由:∵△DOA≌△AHE,∴OD=AH,∵OA=OB,∴BD=OH,∵△BOM≌△EHM,∴OM=MH,∴OM=OH=BD.(2)结论:OA+OD=2AM或OA﹣OD=2AM.理由:当点D在点B左侧时,∵△BOM≌△EHM,△DOA≌△AHE∴OM=MH,OD=AH∴OH=2OM,OD-OB=AH-OA∴BD=OH∴BD=2OM,∴OD﹣OA=2(AM﹣AO),∴OD+OA=2AM.当点D在点B右侧时,过点E作EH⊥y轴于点H∵∠AOD=∠AHE=∠DAE=90°,∴∠DAO+∠EAH=90°,∠EAH+∠AEH=90°,∴∠DAO=∠AEH,∵AD=AE∴△DOA≌△AHE(AAS),∴EH=AO=3=OB,OD=AH∴∠EHO=∠BOH=90°,∵∠BMO=∠EMH,OB=EH=3,∴△BOM≌△EHM(AAS),∴OM=MH∴OA+OD=OA+AH=OH=OM+MH=2MH=2(AM+AH)=2(AM+OD)整理可得OA﹣OD=2AM.综上:OA+OD=2AM或OA﹣OD=2AM.【点睛】此题考查的是全等三角形的判定及性质、旋转的性质和平面直角坐标系,掌握全等三角形的判定及性质、旋转的性质和点的坐标与线段长度的关系是解决此题的关键.16.(1);(2)①;②或.【分析】(1)提示1:先列出4个x的值,分别得出与的大小关系,再利用“不完全归纳法”即可得;提示2:先根据“”得出,再根据“”即可得;(2)①根据(1)的结论得出,据此解不等式组即可得;②先根据(1)的结论得出,再解不等式组求出n的取值范围,从而可得的取值范围,然后根据“为整数”可得出方程,由此解方程即可得.【详解】(1)提示1:当时,,则当时,,则当时,,则当时,,则由“不完全归纳法”可得:;提示2:,且;(2)①由(1)的结论得:解得;②由(1)的结论得:解得为整数则或解得或.【点睛】本题考查了一元一次不等式组的应用、解一元一次方程等知识点,理解新定义,正确求解不等式组是解题关键.17.(1)AC∥DE;(2)①∠CAM+∠MDE=∠AMD,证明见解析;②点M的坐标为(0,)或(0,).【分析】(1)根据两点的纵坐标相等,连线平行x轴进行判断即可;(2)①过点M作MN∥AC,运用平行线的判定和性质即可;②设M(0,m),分两种情况:(i)当点M在线段OB上时,(ii)当点M在线段OB的延长线上时,分别运用三角形面积公式进行计算即可.【详解】解:(1)∵A(−3,3)、C(4,3),∴AC∥x轴,∵D(−2,−1)、E(2,−1),∴DE∥x轴,∴AC∥DE;(2)①如图,∠CAM+∠MDE=∠AMD.理由如下:过点M作MN∥AC,∵MN∥AC(作图),∴∠CAM=∠AMN(两直线平行,内错角相等),∵AC∥DE(已知),∴MN∥DE(平行公理推论),∴∠MDE=∠NMD(两直线平行,内错角相等),∴∠CAM+∠MDE=∠AMN+∠NMD=∠AMD(等量代换).②由题意,得:AC=7,DE=4,设M(0,m),(i)当点M在线段OB上时,BM=3−m,FM=m+1,∴S△ACM=AC•BM=×7×(3−m)=,S△DEM=DE•FM=×4×(m+1)=2m+2,∵S△ACM=S△DEM,∴=2m+2,解得:m=,∴M(0,);(ii)当点M在线段OB的延长线上时,BM=m−3,FM=m+1,∴S△ACM=AC•BM=×7×(m−3)=,S△DEM=DE•FM=×4×(m+1)=2m+2,∵S△ACM=S△DEM,∴=2m+2,解得:m=,∴M(0,);综上所述,点M的坐标为(0,)或(0,).【点睛】本题考查了三角形面积,平行坐标轴的直线上的点的坐标的特征,平行线的判定和性质等,解题关键是运用数形结合思想和分类讨论思想.18.(1),2;(2)或;(3)或2【分析】(1)由,求出和的值即可;(2)过点作直线轴,延长交于,设出点坐标,根据面积关系求出点坐标,再求出的长度,即可求出值;(3)先根据求出点坐标,再根据面积关系求出值即可.【详解】解:(1),,,,,故答案为,2;(2)如图1,过作直线垂直于轴,延长交直线于点,设的坐标为,过作交直线于点,连接,,,,解得,,,又点满足的面积等于6,,解得或;(3)如图2,延长交轴于,过作轴于,过作轴于,,,解得,,,,解得,,,,由题知,当秒时,,,,,,,,解得或2.【点睛】本题是三角形综合题,考查三角形的面积,熟练掌握直角坐标系的知识,三角形的面积,梯形面积等知识是解题的关键.19.(1)C;(2)39和29【分析】(1)首先设较大的两位数为,较小的两位数为,根据题意可得等量关系:①两个两位数的和为68,②比大990,根据等量关系列出方程组;(2)利用加减消元法解方程组即可.【详解】解:(1)解:设较大的两位数为,较小的两位数为,根据题意,得故选:C;(2)化简得,①+②,得,即.①-②,得,即.所以这两个数分别是39和29.【点睛】此题主要考查了由实际问题抽象出二元一次方程组和解二元一次方程组,关键是弄清题目意思,表示出“较小的两位数写在较大的两位数的右边,得到一个四位数为”,把较小的两位数写在较大的两位数的左边,得到另一个四位数为.20.(1)-4,4;(2)购买20支铅笔、20块橡皮、20本日记本共需120元;(3)1【分析】(1)由①-②得2x-2y=-8,则x-y=-4,再由①+②得4x+4y=16,则x+y=4;(2)设1支铅笔x元,1块橡皮y元,1本日记本z元,由题意:买5支铅笔、3块橡皮、2本日记本共需32元,买9支铅笔、5块橡皮、3本日记本共需58元,列出方程组,再由整体思想”求出x+y+z=6,即可求解;(3)由定义新运算:x※y=ax+by+c得1※4=a+4b+c=16①,1※5=a+5b+c=21②,求出a+b+c=1,即可求解.【详解】解:(1),①-②得:2x-2y=-8,∴x-y=-4,①+②得:4x+4y=16,∴x+y=4,故答案为:-4,4;(2)设1支铅笔x元,1块橡皮y元,1本日记本z元,由题意得:,①×2-②得:x+y+z=6,∴20x+20y+20z=20(x+y+z)=20×6=120,即购买20支铅笔、20块橡皮、20本日记本共需120元;(3)∵x※y=ax+by+c,∴1※4=a+4b+c=16①,1※5=a+5b+c=21②,②-①得:b=5,∴a+c=16-4b=-4,∴a+b+c=1,∴1※1=a+b+c=1.【点睛】本题考查了二元一次方程组的应用、整体思想以及新运算等知识;熟练掌握整体思想和新运算,找准等量关系,列出方程组是解题的关键.21.1【分析】利用AM:AN=8:9,设通道的宽为xm,AM=8ym,则AN=9ym,进而利用AD为18m,AB为13m,得出等式求出即可.【详解】设通道的宽是xm,AM=8ym.因为AM∶AN=8∶9,所以AN=9ym.所以解得答:通道的宽是1m.故答案为1.【点睛】本题考查了二元一次方程组的应用.22.(1)A(﹣1,0),B(3,0),C(0,2),D(4,2);(2),,(﹣5,0),(11,0);(3)1【分析】(1)根据非负数的性质求出、的值得出点、的坐标,再由平移可得点、的坐标,即可知答案;(2)分点在轴和轴上两种情况,设出坐标,根据列出方程求解可得;(3)作,则,可得、,进而得到∠DCP+∠BOP=∠CPO,即求解.【详解】解:(1)根据题意得:,解得:a=﹣1,b=3.所以A(﹣1,0),B(3,0),C(0,2),D(4,2),(2)∵AB=3﹣(﹣1)=3+1=4,∴S四边形ABDC=4×2=8;∵S△BCE=S四边形ABDC,当E在y轴上时,设E(0,y),则•|y﹣2|•3=8,解得:y=﹣或y=,∴;当E在x轴上时,设E(x,0),则•|x﹣3|•2=8,解得:x=11或x=﹣5,∴E(﹣5,0),(11,0);(3)由平移的性质可得AB∥CD,如图,过点P作PF∥AB,则PF∥CD,∴∠DCP=∠CPF,∠BOP=∠OPF,∴∠CPO=∠CPF+∠OPF=∠DCP+∠BOP,即∠DCP+∠BOP=∠CPO,所以比值为1.【点睛】本题主要考查非负数的性质、二元一次方程的解法、坐标与平移及平行线的判定与性质,根据非负数性质求得四点的坐标是解题的根本,熟练掌握平行线的判定与性质是解题的关键.23.(1)−3,4,4;(2)(0,)或(0,);(3)n<−5或n>−1【分析】(1)根据非负数的性质构建方程组,求出a和b,再根据BC∥x轴,可得c的值;(2)当点D在直线AB的下方时,如图1−1中,延长BC交y轴于E(0,4),连接AE.设D(0,m).当点D在直线AB的上方时,如图1−2中,连接OB,设D(0,m).分别构建方程,可得结论.(3)如图2中,当点N在点A的右侧时,连接MN,OB,设M(a,b),利用面积法求出b的值,再求出S△BNM=S△BCM时,n的值,同法求出当点N在点的左侧时,且S△BNM=S△BCM时,n的值,结合图象可得结论.【详解】解:(1)∵,又∵≥0,|2a−b+10|≥0,∴a+b−1=0且2a−b+10=0,∴a=−3,b=4,∵BC∥x轴,∴c=4,∴a=−3,b=4,c=4,故答案为:−3,4,4;(2)当点D在直线AB的下方时,如图1−1中,延长BC交y轴于E(0,4),连接AE.设D(0,m).∵S△ABD=S△AED+S△BDE−S△ABE=S△ABC,∴×(4−m)×3+×(4−m)×4−×4×4=×2×4,∴m=;当点D在直线AB的上方时,如图1−2中,连接OB,设D(0,m).∵S△ABD=S△ADO+S△ODB−S△ABO=S△ABC,∴×m×3+×m×4−×3×4=×2×4,∴m=.综上所述,满足条件的点D的坐标为(0,)或(0,).(3)如图2中,当点N点A的右侧时,连接MN,OB.设M(a,b),∵S△BCM=S△OBC−(S△AOB−S△AOM),∴×2×(4−b)=×2×4−(×3×4−12×3×b),解得b=,当S△BNM=S△BCM时,则有×(n+3)×4−×(n+3)×=×2×(4−),解得n=−1,当点N在点A的左侧时,且S△BNM=S△BCM时,同法可得n=−5,观察图象可知,满足条件的n的值为n<−5或n>−1.【点睛】本题属于三角形综合题,考查了三角形的面积,非负数的性质,平行线的性质等知识,解题的关键是学会用分类讨论的思想思考问题,学会利用未知数构建方程解决问题,对于初一学生来说题目有一定的难度.24.(1)见解析;(2);(3)或【分析】(1),转化为不等式组;(2)根据方法二的步骤解答即可;(3)根据方法二的步骤解答,得出,即可得到结论.【详解】解:(1),转化为不等式组;(2),不等式的左、中、右同时减去3,得,同时除以,得;(3),不等式的左、中、右同时乘以3,得,同时加5,得,的整数值或.【点睛】本题考查了解一元一次不等式组,参照方法二解不等式组是解题的关键,应用的是不等式的性质.25.(1);(2)【分析】(1)根据题意设盒底边长,接口的宽度,分别为,,根据题意列方程组,再根据长宽高求得体积;(2)分别设第一个月和第二个月的销售量为盒,根据题意列出方程和不等式组,根据不等式确定二元一次方程的解,两个月的销售总量为盒【详解】(1)设设盒底边长为,接口的宽度为,则盒高是,根据题意得:解得:茶叶盒的容积是:答:该茶叶盒的容积是(2)

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论