云南省昭通市水富市云天化中学2024届高二上数学期末质量检测模拟试题含解析_第1页
云南省昭通市水富市云天化中学2024届高二上数学期末质量检测模拟试题含解析_第2页
云南省昭通市水富市云天化中学2024届高二上数学期末质量检测模拟试题含解析_第3页
云南省昭通市水富市云天化中学2024届高二上数学期末质量检测模拟试题含解析_第4页
云南省昭通市水富市云天化中学2024届高二上数学期末质量检测模拟试题含解析_第5页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

云南省昭通市水富市云天化中学2024届高二上数学期末质量检测模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知函数,则的值为()A. B.C.0 D.12.过圆外一点引圆的两条切线,则经过两切点的直线方程是A. B.C. D.3.已知,为双曲线的左,右顶点,点P在双曲线C上,为等腰三角形,且顶角为,则双曲线C的离心率为()A. B.C.2 D.4.有这样一道题目:“戴氏善屠,日益功倍.初日屠五两,今三十日屠讫,向共屠几何?”其意思为:“有一个姓戴的人善于屠肉,每一天屠完的肉是前一天的2倍,第一天屠了5两肉,共屠了30天,问一共屠了多少两肉?"在这个问题中,该屠夫前5天所屠肉的总两数为()A.35 B.75C.155 D.3155.已知三维数组,,且,则实数()A.-2 B.-9C. D.26.函数的图象大致是()A. B.C. D.7.在等差数列中,,则等于A.2 B.18C.4 D.98.已知命题:△中,若,则;命题:函数,,则的最大值为.则下列命题是真命题的是()A. B.C. D.9.设是等差数列的前项和,已知,,则等于()A. B.C. D.10.在等腰中,在线段斜边上任取一点,则线段的长度大于的长度的概率()A B.C. D.11.已知函数的导函数为,若的图象如图所示,则函数的图象可能是()A B.C. D.12.已知直线和平面,且在上,不在上,则下列判断错误的是()A.若,则存在无数条直线,使得B.若,则存在无数条直线,使得C.若存在无数条直线,使得,则D.若存在无数条直线,使得,则二、填空题:本题共4小题,每小题5分,共20分。13.设数列的前n项和为,且是6和的等差中项,若对任意的,都有,则的最小值为________14.若圆的一条直径的端点是、,则此圆的方程是_______15.双曲线的离心率为,则它的一个焦点到一条渐近线的距离为______16.写出一个离心率且焦点在轴上的双曲线的标准方程________,并写出该双曲线的渐近线方程________三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)如图,在几何体中,底面是边长为2的正三角形,平面,,且,是的中点(1)求证:平面;(2)求异面直线与所成的角的余弦值18.(12分)某班主任对全班名学生进行了作业量多少与手机网游的调查,数据如下表:认为作业多认为作业不多总数喜欢手机网游不喜欢手机网游总数(1)若随机地抽问这个班的一名学生,分别求事件“认为作业不多”和事件“喜欢手机网游且认为作业多”的概率;(2)若在“认为作业多”的学生中已经用分层抽样的方法选取了名学生.现要从这名学生中任取名学生了解情况,求其中恰有名“不喜欢手机网游”的学生的概率19.(12分)已知函数,是的一个极值点.(1)求b的值;(2)当时,求函数的最大值.20.(12分)如图,OP为圆锥的高,AB为底面圆O的直径,C为圆O上一点,并且,E为劣弧上的一点,且,.(1)若E为劣弧的中点,求证:平面POE;(2)若E为劣弧的三等分点(靠近点),求平面PEO与平面PEB的夹角的余弦值.21.(12分)如图所示,在直三棱柱中,是等腰直角三角形,(1)证明:;(2)若点E是棱的中点,求平面与平面所成锐二面角的余弦值22.(10分)已知如图①,在菱形ABCD中,且,为AD的中点,将沿BE折起使,得到如图②所示的四棱锥,在四棱锥中,求解下列问题:(1)求证:BC平面ABE;(2)若P为AC中点,求二面角的余弦值.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】对函数求导,然后将代入导数中可得结果.【详解】,则,则,故选:B2、A【解析】过圆外一点,引圆的两条切线,则经过两切点的直线方程为,故选3、A【解析】根据给定条件求出点P的坐标,再代入双曲线方程计算作答.【详解】由双曲线对称性不妨令点P在第一象限,过P作轴于B,如图,因为等腰三角形,且顶角为,则有,,有,于是得,即点,因此,,解得,所以双曲线C的离心率为.故选:A4、C【解析】构造等比数列模型,利用等比数列的前项和公式计算可得结果.【详解】由题意可得该屠夫每天屠的肉成等比数列,记首项为,公比为,前项和为,所以,,因此前5天所屠肉的总两数为.故选:C.【点睛】本题考查了等比数列模型,考查了等比数列的前项和公式,属于基础题.5、D【解析】由空间向量的数量积运算即可求解【详解】∵,,,,,,且,∴,解得故选:D6、A【解析】根据函数的定义域及零点的情况即可得到答案.【详解】函数的定义域为,则排除选项、,当时,,则在上单调递减,且,,由零点存在定理可知在上存在一个零点,则排除,故选:.7、D【解析】利用等差数列性质得到,,计算得到答案.详解】等差数列中,故选D【点睛】本题考查了等差数列的计算,利用性质可以简化运算,是解题的关键.8、A【解析】由三角形内角及正弦函数的性质判断、的真假,应用换元法令,结合对勾函数的性质确定的值域即知、的真假,根据各选项复合命题判断真假即可.【详解】由且,可得或,故为假命题,为真命题;令,又,则,故,∵在上递减,∴,故的最大值为.∴为真命题,为假命题;∴为真,为假,为假,为假.故选:A.9、C【解析】依题意有,解得,所以.考点:等差数列的基本概念.【易错点晴】本题主要考查等差数列的基本概念.在解有关等差数列的问题时可以考虑化归为和等基本量,通过建立方程(组)获得解.即等差数列的通项公式及前项和公式,共涉及五个量,知其中三个就能求另外两个,即知三求二,多利用方程组的思想,体现了用方程的思想解决问题,注意要弄准它们的值.运用方程的思想解等差数列是常见题型,解决此类问题需要抓住基本量、,掌握好设未知数、列出方程、解方程三个环节,常通过“设而不求,整体代入”来简化运算10、C【解析】利用几何概型的长度比值,即可计算.【详解】设直角边长,斜边,则线段的长度大于的长度的概率.故选:C11、D【解析】根据导函数大于,原函数单调递增;导函数小于,原函数单调递减;即可得出正确答案.【详解】由导函数得图象可得:时,,所以在单调递减,排除选项A、B,当时,先正后负,所以在先增后减,因选项C是先减后增再减,故排除选项C,故选:D.12、D【解析】根据直线和直线,直线和平面的位置关系依次判断每一个选项得到答案.【详解】若,则平行于过的平面与的交线,当时,,则存在无数条直线,使得,A正确;若,垂直于平面中的所有直线,则存在无数条直线,使得,B正确;若存在无数条直线,使得,,,则,C正确;当时,存在无数条直线,使得,D错误.故选:D.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】先根据和项与通项关系得通项公式,再根据等比数列求和公式得,再根据函数单调性得取值范围,即得取值范围,解得结果.【详解】因为是6和的等差中项,所以当时,当时,因此当为偶数时,当为奇数时,因此因为在上单调递增,所以故答案为:【点睛】本题考查根据和项求通项、等比数列定义、等比数列求和公式、利用函数单调性求值域,考查综合分析求解能力,属较难题.14、【解析】先设圆上任意一点的坐标,然后利用直径对应的圆周角为直角,再利用向量垂直建立方程即可【详解】设圆上任意一点的坐标为可得:,则有:,即解得:故答案为:15、【解析】根据双曲线离心率为,可得的值,进而可得双曲线焦点到一条渐近线的距离.【详解】由双曲线离心率为,得,即,故双曲线方程为,焦点坐标为,渐近线方程为:,故焦点到渐近线的距离为,故答案为:.16、①.(答案不唯一)②.(答案不唯一)【解析】令双曲线为,根据离心率可得,结合双曲线参数关系写出一个符合要求的双曲线方程,进而写出对应的渐近线方程.【详解】由题设,可令双曲线为且,∴,则,故为其中一个标准方程,此时渐近线方程为.故答案为:,(答案不唯一).三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)证明见解析;(2).【解析】(1)设为中点,连接,,证明四边形为平行四边形即可;(2)确定异面直线与所成的角为,计算三角形各边长,根据余弦定理计算得到答案.【小问1详解】设为中点,连接,,∵为中点,是的中点,,,故,且,故,且,∴四边形为平行四边形,∴,平面,平面,故平面.【小问2详解】∵,故异面直线与所成的角为,在中:,,.根据余弦定理:,所以异面直线与所成的角的余弦值为.18、(1)事件“认为作业不多”和事件“喜欢手机网游且认为作业多”的概率分别为、;(2).【解析】(1)利用古典概型的概率公式可求得所求事件的概率;(2)确定所选的名学生中,“不喜欢手机网游”和“喜欢手机网游”的学生人数,加以标记,列举出所有的基本事件,确定所求事件所包含的基本事件,利用古典概型的概率公式可求得所求事件的概率.【小问1详解】解:由题意可知,全班名学生中,“认为作业不多”的学生人数为人,“喜欢手机网游且认为作业多”的学生人数为人,因此,随机地抽问这个班的一名学生,事件“认为作业不多”的概率为,事件“喜欢手机网游且认为作业多”的概率为.【小问2详解】解:在“认为作业多”的学生中已经用分层抽样的方法选取了名学生,这名学生中“不喜欢手机网游”的学生人数为,记为,名学生中“喜欢手机网游”的学生人数为,分别记为、、、,从这名学生中任取名学生,所有的基本事件有:、、、、、、、、、,共种,其中,事件“恰有名“不喜欢手机网游”的学生”包含的基本事件有:、、、,共种,故所求概率为.19、(1);(2)【解析】(1)先求出导函数,再根据x=2是的一个极值点对应x=2是导数为0的根即可求b的值;(2)根据(1)的结论求出函数的极值点,通过比较极值与端点值的大小从而确定出最大值.【小问1详解】由题设,.∵x=2是的一个极值点,∴x=2是的一个根,代入解得:.经检验,满足题意.【小问2详解】由(1)知:,则.令,解得x=1或x=2.x1(1,2)2(2,3)30﹣0+递减递增∵当x∈(1,2)时,即在(1,2)上单调递减;当x∈(2,3)时,即在(2,3)上单调递增.∴当x∈[1,3]时,函数的最大值为与中的较大者.∴函数的最大值为.20、(1)证明见解析(2)【解析】(1)推导出平面,,,由此能证明平面(2)推导出,,以为原点,为轴,为轴,为轴,建立空间直角坐标系,利用向量法能求出二面角的余弦值【小问1详解】证明:为圆锥的高,平面,又平面,,为劣弧的中点,,,平面,平面【小问2详解】解:解:为劣弧的三等分点(靠近点,为底面圆的直径,为圆上一点,并且,,以为原点,为轴,为轴,为轴,建立空间直角坐标系,,0,,,0,,,,,,0,,,3,,0,,,,,,,,,3,设平面的法向量,,,则,取,得,,,设平面的法向量,,,则,取,得,1,,设二面角的平面角为,则,二面角的余弦值为21、(1)证明见解析(2)【解析】(1)根据线面垂直的判定定理证出平面,即可证得;(2)以A为原点,分别以所在直线为x轴,y轴,z轴建立空间直角坐标系,根据二面角的向量公式即可求出【小问1详解】如图,连接,由已知可得四边形是正方形,所以在直三棱柱中,平面平面,交线为,在中,可知,所以平面,于因为,所以平面,而平面,所以【小问2详解】如图所示,以A为原点,分别以所在直线为x轴,y轴,z轴建立空间直角坐标系,则,于是设平面的法向量为,则,可取而平面的一个法向量为,所以故平面与平面所成锐二面角的余弦值为22、(1)证明见解析;(2)【解析】(1)利用题中所给的条件证明,,因为,所以,,即可证明平面;(2)先证明平面,以为坐标原点,,,的方向分别为轴,轴,轴,建立如图所示

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论