浙江省共美联盟2023-2024学年高二上数学期末检测试题含解析_第1页
浙江省共美联盟2023-2024学年高二上数学期末检测试题含解析_第2页
浙江省共美联盟2023-2024学年高二上数学期末检测试题含解析_第3页
浙江省共美联盟2023-2024学年高二上数学期末检测试题含解析_第4页
浙江省共美联盟2023-2024学年高二上数学期末检测试题含解析_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

浙江省共美联盟2023-2024学年高二上数学期末检测试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.如图,在长方体中,,,则直线和夹角余弦值为()A. B.C. D.2.已知圆与圆,则两圆的位置关系是()A.外切 B.内切C.相交 D.相离3.若且,则下列选项中正确的是()A B.C. D.4.已知数列满足,,令,若对于任意不等式恒成立,则实数t的取值范围为()A. B.C. D.5.若方程表示圆,则实数m的取值范围为()A B.C. D.6.已知函数,则()A. B.0C. D.17.设A=37+·35+·33+·3,B=·36+·34+·32+1,则A-B的值为()A.128 B.129C.47 D.08.公比为的等比数列,其前项和为,前项积为,满足,.则下列结论正确的是()A.的最大值为B.C.最大值为D.9.设为双曲线与椭圆的公共的左右焦点,它们在第一象限内交于点是以线段为底边的等腰三角形,若椭圆的离心率范围为,则双曲线的离心率取值范围是()A. B.C. D.10.若两直线与互相垂直,则k的值为()A.1 B.-1C.-1或1 D.211.下列说法中正确的是A.命题“若,则”的逆命题为真命题B.若为假命题,则均为假命题C.若为假命题,则为真命题D.命题“若两个平面向量满足,则不共线”的否命题是真命题.12.已知椭圆的离心率为,直线与椭圆交于两点,为坐标原点,且,则椭圆的方程为A B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知圆关于直线对称,则________14.某中学拟从4月16号至30号期间,选择连续两天举行春季运动会,从已往的气象记录中随机抽取一个年份,记录天气结果如下:日期161718192021222324252627282930天气晴阴雨阴阴晴阴晴雨雨阴晴晴晴雨估计运动会期间不下雨的概率为_____________.15.已知点和,M是椭圆上一动点,则的最大值为________.16.已知数列为严格递增数列,且对任意,都有且.若对任意恒成立,则________三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知是公差不为零的等差数列,,且,,成等比数列(1)求数列的通项公式;(2)设,求数列的前项和18.(12分)如图,底面是矩形的直棱柱中,;(1)求证:平面;(2)求直线与平面所成角的大小;19.(12分)如图,在三棱柱中,四边形为矩形,,,点E为棱的中点,.(1)求证:平面平面;(2)求平面AEB与平面夹角的余弦值.20.(12分)如图①,直角梯形中,,,点,分别在,上,,,将四边形沿折起,使得点,分别到达点,的位置,如图②,平面平面,.(1)求证:平面平面;(2)求二面角的余弦值.21.(12分)在中,,,的对边分别是,,,已知.(1)求;(2)若,且的面积为4,求的周长22.(10分)已知函数在处取得极值(1)求实数a的值;(2)若函数在内有零点,求实数b的取值范围

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】如图建立空间直角坐标系,分别求出的坐标,由空间向量夹角公式即可求解.【详解】如图:以为原点,分别以,,所在的直线为,,轴建立空间直角坐标系,则,,,,所以,,所以,所以直线和夹角的余弦值为,故选:D.2、A【解析】求得两圆的圆心和半径,再根据圆心距与半径之和半径之差的关系,即可判断位置关系.【详解】对圆,其圆心,半径;对圆,其圆心,半径;又,故两圆外切.故选:A.3、C【解析】对于A,作商比较,对于B,利用基本不等式的推广式判断,对于C,利用在单位圆中,内接正边形的面积小于内接正边形的面积判断,对于D,利用放缩法判断【详解】,故错误;,故错误;在单位圆中,内接正边形的面积小于内接正边形的面积(必修三阅读材料割圆术),则,故正确;,故错误故选:C【点睛】关键点点睛:此题考查不等式的综合应用,考查基本不等式的推广式的应用,考查放缩法的应用,对于C项解题的关键是利用了在单位圆中,内接正边形的面积小于内接正边形的面积求解,考查数学转化思想,属于难题4、D【解析】根据递推关系,利用裂项相消法,累加法求出,可得,原不等式转化为恒成立求解即可.【详解】,,,由累加法可得,又,,符合上式,,,对于任意不等式恒成立,则,解得.故选:D5、D【解析】根据,解不等式即可求解.【详解】由方程表示圆,则,解得.所以实数m的取值范围为.故选:D6、B【解析】先求导,再代入求值.详解】,所以.故选:B7、A【解析】先化简A-B,发现其结果为二项式展开式,然后计算即可【详解】A-B=37-·36+·35-·34+·33-·32+·3-1=故选A.【点睛】本题主要考查了二项式定理的运用,关键是通过化简能够发现其结果在形式上满足二项式展开式,然后计算出结果,属于基础题8、A【解析】根据已知条件,判断出,即可判断选项D,再根据等比数列的性质,判断,,由此判断出选项A,B,C.【详解】根据题意,等比数列满足条件,,,若,则,则,,则,这与已知条件矛盾,所以不符合题意,故选项D错误;因为,,,所以,,,则,,数列前2021项都大于1,从第2022项开始都小于1,因此是数列中的最大值,故选项A正确由等比数列的性质,,故选项B不正确;而,由以上分析可知其无最大值,故C错误;故选:A9、A【解析】设椭圆的标准方程为,根据椭圆和双曲线的定义可得到两图形离心率之间的关系,再根据椭圆的离心率范围可得双曲线的离心率取值范围.【详解】设椭圆的标准方程为,,则有已知,两式相减得,即,,因为,解得故选:A.10、B【解析】根据互相垂直的两直线的性质进行求解即可.【详解】由,因此直线的斜率为,直线的斜率为,因为两直线与互相垂直,所以,故选:B11、D【解析】A中,利用四种命题的的真假判断即可;B、C中,命题“”为假命题时,、至少有一个为假命题;D中,写出该命题的否命题,再判断它的真假性【详解】对于A,命题“若,则”的逆命题是:若,则;因为也成立.所以A不正确;对于B,命题“”为假命题时,、至少有一个为假命题,所以B错误;C错误;对于D,“平面向量满足”,则不共线的否命题是,若“平面向量满足”,则共线;由知:,一定有,,所以共线,D正确.故选:D.【点睛】本题考查了命题的真假性判断问题,也考查了推理与判断能力,是基础题12、D【解析】根据等腰直角三角形的性质可得,将代入椭圆方程,结合离心率为以及性质列方程组求得与的值,从而可得结果.【详解】设直线与椭圆在第一象限的交点为,因为,所以,即,由可得,,故所求椭圆的方程为.故选D.【点睛】本题主要考查椭圆的标准方程与性质,以及椭圆离心率的应用,意在考查对基础知识掌握的熟练程度,属于中档题.二、填空题:本题共4小题,每小题5分,共20分。13、1【解析】根据题意,圆心在直线上,进而求得答案.【详解】由题意,圆心在直线上,则.故答案为:1.14、【解析】以每相邻两天为一个基本事件,求出试验的基本事件数,再求出两天都不下雨的基本事件数,利用古典概率公式计算作答.【详解】依题意,以每相邻两天为一个基本事件,如16号与17号、17号与18号为不同的两个基本事件,则从4月16号至30号期间,共有14个基本事件,它们等可能,其中相邻两天不下雨有16与17,19与20,20与21,21与22,22与23,26与27,27与28,28与29,共8个不同结果,所以运动会期间不下雨的概率为.故答案为:15、【解析】由题设条件可知,.当M在直线与椭圆交点上时,在第一象限交点时有,在第三象限交点时有.显然当M在直线与椭圆第三象限交点时有最大值,其最大值.由此能够求出的最大值.【详解】解:A为椭圆右焦点,设左焦点为,则由椭圆定义,于是.当M不在直线与椭圆交点上时,M、F、B三点构成三角形,于是,而当M在直线与椭圆交点上时,在第一象限交点时,有,在第三象限交点时有.显然当M在直线与椭圆第三象限交点时有最大值,其最大值为.故答案为:.【点睛】本题考查椭圆的基本性质,解题时要熟练掌握基本公式.16、66【解析】根据恒成立和严格递增可得,然后利用递推求出,的值,不难发现在此两项之间的所有项为连续正整数,于是可得,,然后可解.【详解】因为,且数列为严格递增数列,所以或,若,则(矛盾),故由可得:,,,,,,,,,,,,,因,,,且数列为严格递增数列,,所以,,所以,所以故答案为:66三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2)【解析】(1)由等差数列以及等比中项的公式代入联立求解出,再利用等差数列的通项公式即可求得答案;(2)利用分组求和法,根据求和公式分别求出等差数列与等比数列的前项和再相加即可.【详解】(1)由题意,,,即,联立解得,所以数列的通项公式为;(2)由(1)得,,所以【点睛】关于数列前项和的求和方法:分组求和法:两个数列等差或者等比数列相加时利用分组求和法计算;裂项相加法:数列的通项公式为分式时可考虑裂项相消法求和;错位相减法:等差乘以等比数列的情况利用错位相减法求和.18、(1)证明见解析(2)【解析】(1)通过证明和可得答案;(2)连接,则为直线与平面所成角的平面角,在直角三角形中计算即可.【小问1详解】棱柱为直棱柱,面,又面,又直棱柱的底面是矩形,,又,平面,平面,平面;【小问2详解】连接,面,则为直线与平面所成角的平面角在直角三角形中,则,,所以直线与平面所成角的大小为.19、(1)证明见解析(2)【解析】(1)根据矩形及勾股定理的逆定理可得线面垂直的条件,再由平面,即可证明面面垂直;(2)建立空间直角坐标后,求出相关法向量,再用夹角公式即可.【小问1详解】证明:由三棱柱的性质及可知四边形为菱形又∵∴为等边三角形∴,又∵,∴,∴又∵四边形为矩形∴又∵∴平面又∵平面∴平面平面.【小问2详解】以B为原点BE为x轴,为y轴,BA为E轴建立空间直角坐标系,如图所示,,,,,,设平面的法向量为.则即∴,又∵平面ABE的法向量为,∴,∴平面ABE与平面夹角的余弦值为.20、(1)证明见解析(2)【解析】(1)根据,,,,易证,再根据平面平面,,得到平面,进而得到,再利用线面垂直的判定定理证明平面即可;(2)根据(1)知,,两两垂直,以,,的方向分别为,,轴的正方向建立空间直角坐标系,分别求得平面的一个法向量和平面的一个法向量,设二面角的大小为,由求解.【小问1详解】解:因为,,,所以,,又,所以是等腰直角三角形,即,所以.由平面几何知识易知,所以,即.又平面平面,平面平面,,所以平面,又平面,所以.又,所以平面,又平面,所以平面平面.【小问2详解】由(1)知,,两两垂直,以,,的方向分别为,,轴的正方向,建立如图所示的空间直角坐标系,设,则,,,,F(1,0,0),则,,设平面的一个法向量为,由,得,取,则.由,,,得平面,所以平面的一个法向量为,设二面角的大小为,则,由图可知二面角为钝二面角,所以二面角的余弦值为.21、(1)(2)【解析】(1)根据正弦定理及题中条件,可得,化简整理,即可求解(2)由的面积为4,结合(1)中结论,可得,结合余弦定理,可得,从而可求的周长【详解】解:(1)由及正弦定理得,,又,∴,∴,∴.(2)∵的面积为,∴.由余弦定理得

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论