浙江省宁波市奉化高中、三山高中等六校2023年高二数学第一学期期末调研试题含解析_第1页
浙江省宁波市奉化高中、三山高中等六校2023年高二数学第一学期期末调研试题含解析_第2页
浙江省宁波市奉化高中、三山高中等六校2023年高二数学第一学期期末调研试题含解析_第3页
浙江省宁波市奉化高中、三山高中等六校2023年高二数学第一学期期末调研试题含解析_第4页
浙江省宁波市奉化高中、三山高中等六校2023年高二数学第一学期期末调研试题含解析_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

浙江省宁波市奉化高中、三山高中等六校2023年高二数学第一学期期末调研试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.命题“若,都是偶数,则也是偶数”的逆否命题是A.若是偶数,则与不都是偶数B.若是偶数,则与都不是偶数C.若不是偶数,则与不都是偶数D.若不是偶数,则与都不是偶数2.已知数列满足,(且),若恒成立,则M的最小值是()A.2 B.C. D.33.设正实数,满足(其中为正常数),若的最大值为3,则()A.3 B.C. D.4.如图,过拋物线的焦点的直线与拋物线交于两点,与其准线交于点(点位于之间)且于点且,则等于()A. B.C. D.5.“,”的否定是A., B.,C., D.,6.在等差数列中,已知,则()A.4 B.8C.3 D.67.两圆和的位置关系是()A.内切 B.外离C.外切 D.相交8.在下列四条抛物线中,焦点到准线的距离为1的是()A. B.C. D.9.直线的倾斜角为()A.150° B.120°C.60° D.30°10.经过点作圆的弦,使点为弦的中点,则弦所在直线的方程为A. B.C. D.11.如图,在平行六面体中,M为与的交点,若,,,则下列向量中与相等的向量是()A. B.C. D.12.已知:,直线l:,M为直线l上的动点,过点M作的切线MA,MB,切点为A,B,则四边形MACB面积的最小值为()A.1 B.2C. D.4二、填空题:本题共4小题,每小题5分,共20分。13.过点与直线平行的直线的方程是________.14.已知满足的双曲线(a,b>0,c为半焦距)为黄金双曲线,则黄金双曲线的离心率为______15.如图所示的茎叶图记录了甲、乙两组各5名工人某日的产量数据(单位:件).若这两组数据的中位数相等,且平均值也相等,则x=_____________,y=_____________16.已知圆关于直线对称,则________三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知椭圆的一个焦点是,且离心率.(1)求椭圆的方程;(2)设过点的直线交于两点,线段的垂直平分线交轴于点,求的取值范围.18.(12分)“绿水青山就是金山银山”,中国一直践行创新、协调、绿色、开放、共享的发展理念,着力促进经济实现高质量发展,决心走绿色、低碳、可持续发展之路.新能源汽车环保、节能,以电代油,减少排放,既符合我国的国情,也代表了世界汽车产业发展的方向工业部表示,到2025年我国新能源汽车销量占总销量将达20%以上.2021年,某集团以20亿元收购某品牌新能源汽车制造企业,并计划投资30亿元来发展该品牌.2021年该品牌汽车的销售量为10万辆,每辆车的平均销售利润为3000元.据专家预测,以后每年销售量比上一年增加10万辆,每辆车的平均销售利润比上一年减少10%(1)若把2021年看作第一年,则第n年的销售利润为多少亿元?(2)到2027年年底,该集团能否通过该品牌汽车实现盈利?(实现盈利即销售利润超过总投资,参考数据:,,)19.(12分)已知圆心为的圆,满足下列条件:圆心在轴上,与直线相切,且被轴截得的弦长为,圆的面积小于(1)求圆的标准方程;(2)设过点的直线与圆交于不同的两点、,以、为邻边作平行四边形.是否存在这样的直线,使得直线与恰好平行?如果存在,求出的方程,如果不存在,请说明理由20.(12分)求适合条件的椭圆的标准方程.(1)长轴长是短轴长的2倍,且过点;(2)在x轴上的一个焦点与短轴两端点的连线互相垂直,且焦距为6.21.(12分)已知为直角梯形,,平面,,.(1)求证:平面;(2)求平面与平面所成锐二面角的余弦值.22.(10分)已知直线经过抛物线的焦点,且与抛物线相交于两点.(1)若直线的斜率为1,求;(2)若,求直线的方程.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】命题的逆否命题是将条件和结论对换后分别否定,因此“若都是偶数,则也是偶数”的逆否命题是若不是偶数,则与不都是偶数考点:四种命题2、C【解析】根据,(且),利用累加法求得,再根据恒成立求解.【详解】因为数列满足,,(且)所以,,,,因为恒成立,所以,则M的最小值是,故选:C3、D【解析】由于,,为正数,且,所以利用基本不等式可求出结果【详解】解:因为正实数,满足(其中为正常数),所以,则,所以,所以故选:D.4、B【解析】由题可得,然后结合条件可得,即求.【详解】设于点,准线交轴于点G,则,又,∴,又于点且,∴BE∥AD,∴,即,∴,∴等于.故选:B.5、D【解析】通过命题的否定的形式进行判断【详解】因为全称命题的否定是特称命题,故“,”的否定是“,”.故选D.【点睛】本题考查全称命题的否定,属基础题.6、B【解析】根据等差数列的性质计算出正确答案.【详解】由等差数列的性质可知,得.故选:B7、A【解析】计算出圆心距,利用几何法可判断两圆的位置关系.【详解】圆的圆心坐标为,半径为,圆的圆心坐标为,半径为,两圆圆心距为,则,因此,两圆和内切.故选:A.8、D【解析】由题意可知,然后分析判断即可【详解】由题意知,即可满足题意,故A,B,C错误,D正确.故选:D9、D【解析】由斜率得倾斜角【详解】直线的斜率为,所以倾斜角为30°.故选:D10、A【解析】由题知为弦AB的中点,可得直线与过圆心和点的直线垂直,可求的斜率,然后用点斜式求出的方程【详解】由题意知圆的圆心为,,由,得,∴弦所在直线的方程为,整理得.选A.【点睛】本题考查直线与圆的位置关系,直线的斜率,直线的点斜式方程,属于基础题11、A【解析】利用空间向量的三角形法则可得,结合平行六面体的性质分析解答【详解】平行六面体中,M为与的交点,,,,则有:,所以.故选:A12、B【解析】易知四边形MACB的面积为,然后由最小,根据与直线l:垂直求解.【详解】:化为标准方程为:,由切线长得:,四边形MACB的面积为,若四边形MACB的面积最小,则最小,此时与直线l:垂直,所以,所以四边形MACB面积的最小值,故选:B二、填空题:本题共4小题,每小题5分,共20分。13、【解析】根据给定条件设出所求直线方程,利用待定系数法求解即得.【详解】设与直线平行的直线的方程为,而点在直线上,于是得,解得,所以所求的直线的方程为.故答案为:14、##【解析】根据题设及双曲线离心率公式可得,结合双曲线离心率的性质即可求离心率.【详解】由题设,,整理得:,所以,而,故.故答案为:.15、①.3②.5【解析】根据茎叶图进行数据分析,列方程求出x、y.【详解】由题意,甲组数据为56,62,65,70+x,74;乙组数据为59,61,67,60+y,78.要使两组数据中位数相等,有65=60+y,所以y=5.又平均数相同,则,解得x=3.故答案为:3;5.16、1【解析】根据题意,圆心在直线上,进而求得答案.【详解】由题意,圆心在直线上,则.故答案为:1.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)【解析】(1)由条件可得,,然后可得答案;(2)设直线的方程为,,联立直线与椭圆的方程消元,然后算出中点的坐标,然后可得线段的垂直平分线方程,然后可得,然后可求出答案.【小问1详解】因为椭圆的一个焦点是,且离心率所以,,所以所以椭圆的方程为【小问2详解】显然直线的斜率不为0,设直线的方程为,联立可得,所以所以中点的纵坐标为,横坐标为所以线段的垂直平分线方程为令,可得当时,当时,,因为,所以综上:18、(1)亿元(2)该集团能通过该品牌汽车实现盈利【解析】(1)由题意可求得第n年的销售量,第n年每辆车的平均销售利润,从而可求出第n年的销售利润,(2)利用错位相减法求出到2027年年底销售利润总和,再与总投资额比较即可【小问1详解】设第n年的销售量为万辆,则该汽车的年销售量构成首项为10,公差为10的等差数列,所以,设第n年每辆车的平均销售利润为元,则每辆汽车的平均销售利润构成首项为3000,公比为0.9的等比数列,所以,记第n年的销售利润为,则万元;即第n年的销售利润为亿元【小问2详解】到2027年年底,设销售利润总和为S亿元,则①,②,①﹣②得亿元,而总投资为亿元,因为,则到2027年年底,该集团能通过该品牌汽车实现盈利19、(1);(2)不存在,理由见解析.【解析】(1)设圆心,设圆的半径为,可得出,根据已知条件可得出关于实数的方程,求出的值,可得出的值,进而可得出圆的标准方程;(2)分析可知直线的斜率存在,可设直线的方程为,设点、,将直线的方程与圆的方程联立,由可求得的取值范围,列出韦达定理,分析可得,可求得点的坐标,由已知可得出,求出的值,检验即可得出结论.【小问1详解】解:设圆心,设圆的半径为,则,由题意可得,由勾股定理可得,则,由题意可得,解得,则,因此,圆的标准方程为.【小问2详解】解:若直线的斜率不存在,此时直线与轴重合,则、、三点共线,不合乎题意.所以,直线的斜率存在,可设直线的方程为,设点、,联立,可得,,解得或,由韦达定理可得,,则,因为四边形为平行四边形,则,因为,则,则,解得,因为或,因此,不存直线,使得直线与恰好平行.20、(1)或(2)【解析】(1)待定系数法去求椭圆的标准方程即可;(2)待定系数法去求椭圆的标准方程即可.【小问1详解】当椭圆焦点在x轴上时,方程可设为,将点代入得,解之得,则所求椭圆方程为当椭圆焦点在y轴上时,方程可设为,将点代入得,解之得,则所求椭圆方程为【小问2详解】椭圆方程可设为,则,解之得,则椭圆方程为21、(1)证明见解析;(2).【解析】建立空间直角坐标系.(1)方法一,利用向量的方法,通过计算,,证得,,由此证得平面.方法二,利用几何法,通过平面证得,结合证得,由此证得平面.(2)通过平面和平面的法向量,计算出平面与平面所成锐二面角的余弦值.【详解】如图,以为原点建立空间直角坐标系,可得,,,.(1)证明法一:因为,,,所以,,所以,,,平面,平面,所以平面.证明法二:因为平面,平面,所以,又因为,即,,平面,平面,所以平面.(2)由(1)知平面的一个法向量,设平面的法向量,又,,且所以所以平面的一个法向量为,所以,所以平面与平面所成锐二面角的余弦值为.【点睛】

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论