




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
河北省深州市中学2022-2023学年普通高考第二次适应性检测试题数学试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.第24届冬奥会将于2022年2月4日至2月20日在北京市和张家口市举行,为了解奥运会会旗中五环所占面积与单独五个环面积之和的比值P,某学生做如图所示的模拟实验:通过计算机模拟在长为10,宽为6的长方形奥运会旗内随机取N个点,经统计落入五环内部及其边界上的点数为n个,已知圆环半径为1,则比值P的近似值为()A. B. C. D.2.设非零向量,,,满足,,且与的夹角为,则“”是“”的().A.充分非必要条件 B.必要非充分条件C.充分必要条件 D.既不充分也不必要条件3.第七届世界军人运动会于2019年10月18日至27日在中国武汉举行,中国队以133金64银42铜位居金牌榜和奖牌榜的首位.运动会期间有甲、乙等五名志愿者被分配到射击、田径、篮球、游泳四个运动场地提供服务,要求每个人都要被派出去提供服务,且每个场地都要有志愿者服务,则甲和乙恰好在同一组的概率是()A. B. C. D.4.我国古代有着辉煌的数学研究成果,其中的《周髀算经》、《九章算术》、《海岛算经》、《孙子算经》、《缉古算经》,有丰富多彩的内容,是了解我国古代数学的重要文献.这5部专著中有3部产生于汉、魏、晋、南北朝时期.某中学拟从这5部专著中选择2部作为“数学文化”校本课程学习内容,则所选2部专著中至少有一部是汉、魏、晋、南北朝时期专著的概率为()A. B. C. D.5.复数的虚部是()A. B. C. D.6.等差数列中,已知,且,则数列的前项和中最小的是()A.或 B. C. D.7.复数的共轭复数对应的点位于()A.第一象限 B.第二象限 C.第三象限 D.第四象限8.已知双曲线的左焦点为,直线经过点且与双曲线的一条渐近线垂直,直线与双曲线的左支交于不同的两点,,若,则该双曲线的离心率为().A. B. C. D.9.某几何体的三视图如右图所示,则该几何体的外接球表面积为()A. B.C. D.10.总体由编号01,,02,…,19,20的20个个体组成.利用下面的随机数表选取5个个体,选取方法是随机数表第1行的第5列和第6列数字开始由左到右依次选取两个数字,则选出来的第5个个体的编号为7816
6572
0802
6314
0702
4369
9728
0198
3204
9234
4935
8200
3623
4869
6938
7481
A.08 B.07 C.02 D.0111.若直线y=kx+1与圆x2+y2=1相交于P、Q两点,且∠POQ=120°(其中O为坐标原点),则k的值为()A. B. C.或- D.和-12.已知抛物线,F为抛物线的焦点且MN为过焦点的弦,若,,则的面积为()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知集合,其中,.且,则集合中所有元素的和为_________.14.已知两点,,若直线上存在点满足,则实数满足的取值范围是__________.15.某校共有师生1600人,其中教师有1000人,现用分层抽样的方法,从所有师生中抽取一个容量为80的样本,则抽取学生的人数为_____.16.能说明“在数列中,若对于任意的,,则为递增数列”为假命题的一个等差数列是______.(写出数列的通项公式)三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)在直角坐标系中,点的坐标为,直线的参数方程为(为参数,为常数,且).以直角坐标系的原点为极点,轴的正半轴为极轴,且两个坐标系取相等的长度单位,建立极坐标系,圆的极坐标方程为.设点在圆外.(1)求的取值范围.(2)设直线与圆相交于两点,若,求的值.18.(12分)在极坐标系中,已知曲线C的方程为(),直线l的方程为.设直线l与曲线C相交于A,B两点,且,求r的值.19.(12分)已知函数.(1)时,求不等式解集;(2)若的解集包含于,求a的取值范围.20.(12分)设椭圆E:(a,b>0)过M(2,),N(,1)两点,O为坐标原点,(1)求椭圆E的方程;(2)是否存在圆心在原点的圆,使得该圆的任意一条切线与椭圆E恒有两个交点A,B,且?若存在,写出该圆的方程,若不存在说明理由.21.(12分)已知中,角,,的对边分别为,,,已知向量,且.(1)求角的大小;(2)若的面积为,,求.22.(10分)选修4-5:不等式选讲设函数f(x)=|x-a|,a<0.(1)证明:f(x)+f(-1(2)若不等式f(x)+f(2x)<12的解集非空,求
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】
根据比例关系求得会旗中五环所占面积,再计算比值.【详解】设会旗中五环所占面积为,由于,所以,故可得.故选:B.【点睛】本题考查面积型几何概型的问题求解,属基础题.2、C【解析】
利用数量积的定义可得,即可判断出结论.【详解】解:,,,解得,,,解得,“”是“”的充分必要条件.故选:C.【点睛】本题主要考查平面向量数量积的应用,考查推理能力与计算能力,属于基础题.3、A【解析】
根据题意,五人分成四组,先求出两人组成一组的所有可能的分组种数,再将甲乙组成一组的情况,即可求出概率.【详解】五人分成四组,先选出两人组成一组,剩下的人各自成一组,所有可能的分组共有种,甲和乙分在同一组,则其余三人各自成一组,只有一种分法,与场地无关,故甲和乙恰好在同一组的概率是.故选:A.【点睛】本题考查组合的应用和概率的计算,属于基础题.4、D【解析】
利用列举法,从这5部专著中选择2部作为“数学文化”校本课程学习内容,基本事件有10种情况,所选2部专著中至少有一部是汉、魏、晋、南北朝时期专著的基本事件有9种情况,由古典概型概率公式可得结果.【详解】《周髀算经》、《九章算术》、《海岛算经》、《孙子算经》、《缉古算经》,这5部专著中有3部产生于汉、魏、晋、南北朝时期.记这5部专著分别为,其中产生于汉、魏、晋、南北朝时期.从这5部专著中选择2部作为“数学文化”校本课程学习内容,基本事件有共10种情况,所选2部专著中至少有一部是汉、魏、晋、南北朝时期专著的基本事件有,共9种情况,所以所选2部专著中至少有一部是汉、魏、晋、南北朝时期专著的概率为.故选D.【点睛】本题主要考查古典概型概率公式的应用,属于基础题,利用古典概型概率公式求概率时,找准基本事件个数是解题的关键,基本亊件的探求方法有(1)枚举法:适合给定的基本事件个数较少且易一一列举出的;(2)树状图法:适合于较为复杂的问题中的基本亊件的探求.在找基本事件个数时,一定要按顺序逐个写出:先,….,再,…..依次….…这样才能避免多写、漏写现象的发生.5、C【解析】因为,所以的虚部是,故选C.6、C【解析】
设公差为,则由题意可得,解得,可得.令
,可得
当时,,当时,,由此可得数列前项和中最小的.【详解】解:等差数列中,已知,且,设公差为,
则,解得
,.
令
,可得,故当时,,当时,,
故数列前项和中最小的是.故选:C.【点睛】本题主要考查等差数列的性质,等差数列的通项公式的应用,属于中档题.7、A【解析】
试题分析:由题意可得:.共轭复数为,故选A.考点:1.复数的除法运算;2.以及复平面上的点与复数的关系8、A【解析】
直线的方程为,令和双曲线方程联立,再由得到两交点坐标纵坐标关系进行求解即可.【详解】由题意可知直线的方程为,不妨设.则,且将代入双曲线方程中,得到设则由,可得,故则,解得则所以双曲线离心率故选:A【点睛】此题考查双曲线和直线相交问题,联立直线和双曲线方程得到两交点坐标关系和已知条件即可求解,属于一般性题目.9、A【解析】
由三视图知:几何体为三棱锥,且三棱锥的一条侧棱垂直于底面,结合直观图判断外接球球心的位置,求出半径,代入求得表面积公式计算.【详解】由三视图知:几何体为三棱锥,且三棱锥的一条侧棱垂直于底面,高为2,底面为等腰直角三角形,斜边长为,如图:的外接圆的圆心为斜边的中点,,且平面,,的中点为外接球的球心,半径,外接球表面积.故选:A【点睛】本题考查了由三视图求几何体的外接球的表面积,根据三视图判断几何体的结构特征,利用几何体的结构特征与数据求得外接球的半径是解答本题的关键.10、D【解析】从第一行的第5列和第6列起由左向右读数划去大于20的数分别为:08,02,14,07,01,所以第5个个体是01,选D.考点:此题主要考查抽样方法的概念、抽样方法中随机数表法,考查学习能力和运用能力.11、C【解析】
直线过定点,直线y=kx+1与圆x2+y2=1相交于P、Q两点,且∠POQ=120°(其中O为原点),可以发现∠QOx的大小,求得结果.【详解】如图,直线过定点(0,1),∵∠POQ=120°∴∠OPQ=30°,⇒∠1=120°,∠2=60°,∴由对称性可知k=±.故选C.【点睛】本题考查过定点的直线系问题,以及直线和圆的位置关系,是基础题.12、A【解析】
根据可知,再利用抛物线的焦半径公式以及三角形面积公式求解即可.【详解】由题意可知抛物线方程为,设点点,则由抛物线定义知,,则.由得,则.又MN为过焦点的弦,所以,则,所以.故选:A【点睛】本题考查抛物线的方程应用,同时也考查了焦半径公式等.属于中档题.二、填空题:本题共4小题,每小题5分,共20分。13、2889【解析】
先计算集合中最小的数为,最大的数,可得,求和即得解.【详解】当时,集合中最小数;当时,得到集合中最大的数;故答案为:2889【点睛】本题考查了数列与集合综合,考查了学生综合分析,转化划归,数学运算的能力,属于中档题.14、【解析】
问题转化为求直线与圆有公共点时,的取值范围,利用数形结合思想能求出结果.【详解】解:直线,点,,直线上存在点满足,的轨迹方程是.如图,直线与圆有公共点,圆心到直线的距离:,解得.实数的取值范围为.故答案为:.【点睛】本题主要考查直线方程、圆、点到直线的距离公式等基础知识,考查推理论证能力、运算求解能力,考查化归与转化思想、函数与方程思想,属于中档题.15、1【解析】
直接根据分层抽样的比例关系得到答案.【详解】分层抽样的抽取比例为,∴抽取学生的人数为6001.故答案为:1.【点睛】本题考查了分层抽样的计算,属于简单题.16、答案不唯一,如【解析】
根据等差数列的性质可得到满足条件的数列.【详解】由题意知,不妨设,则,很明显为递减数列,说明原命题是假命题.所以,答案不唯一,符合条件即可.【点睛】本题考查对等差数列的概念和性质的理解,关键是假设出一个递减的数列,还需检验是否满足命题中的条件,属基础题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)【解析】
(1)首先将曲线化为直角坐标方程,由点在圆外,则解得即可;(2)将直线的参数方程代入圆的普通方程,设、对应的参数分别为,列出韦达定理,由及在圆的上方,得,即即可解得;【详解】解:(1)曲线的直角坐标方程为.由点在圆外,得点的坐标为,结合,解得.故的取值范围是.(2)由直线的参数方程,得直线过点,倾斜角为,将直线的参数方程代入,并整理得,其中.设、对应的参数分别为,则,.由及在圆的上方,得,即,代入①,得,,消去,得,结合,解得.故的值是.【点睛】本题考查极坐标方程化为直角坐标方程,直线的参数方程的几何意义的应用,属于中档题.18、【解析】
先将曲线C和直线l的极坐标方程化为直角坐标方程,可得圆心到直线的距离,再由勾股定理,计算即得.【详解】以极点为坐标原点,极轴为x轴的正半轴建立平面直角坐标系,可得曲线C:()的直角坐标方程为,表示以原点为圆心,半径为r的圆.由直线l的方程,化简得,则直线l的直角坐标方程方程为.记圆心到直线l的距离为d,则,又,即,所以.【点睛】本题考查曲线和直线的极坐标方程化为直角坐标方程,是基础题.19、(1)(2)【解析】
(1)代入可得对分类讨论即可得不等式的解集;(2)根据不等式在上恒成立去绝对值化简可得再去绝对值即可得关于的不等式组解不等式组即可求得的取值范围【详解】(1)当时,不等式可化为,①当时,不等式为,解得;②当时,不等式为,无解;③当时,不等式为,解得,综上,原不等式的解集为.(2)因为的解集包含于,则不等式可化为,即.解得,由题意知,解得,所以实数a的取值范围是.【点睛】本题考查了绝对值不等式的解法分类讨论解绝对值不等式的应用,含参数不等式的解法.难度一般.20、(1)(2)【解析】试题分析:(1)因为椭圆E:(a,b>0)过M(2,),N(,1)两点,所以解得所以椭圆E的方程为(2)假设存在圆心在原点的圆,使得该圆的任意一条切线与椭圆E恒有两个交点A,B,且,设该圆的切线方程为解方程组得,即,则△=,即,要使,需使,即,所以,所以又,所以,所以,即或,因为直线为圆心在原点的圆的一条切线,所以圆的半径为,,,所求的圆为,此时圆的切线都满足或,而当切线的斜率不存在时切线为与椭圆的两个交点为或满足,综上,存在圆心在原点的圆,使得该圆的任意一条切线与椭圆E恒有两个交点A,B,且.考点:本题主要考查椭圆的标准方程,直线与椭圆的位置关系,圆与椭圆的位置关系.点评:中档题,涉及直线
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 多维度评估工作效果与效率计划
- 与作者合作合同标准文本
- 农场定制招商加盟合同标准文本
- 书加工合同样本
- 农行按揭合同标准文本
- 上海品质营销咨询合同样本
- 代购夫妻诈骗合同标准文本
- 代运营佣金合同标准文本
- 企业业务提成合同标准文本
- 2025青岛劳动合同范文
- 2024-2025学年九年级化学人教版教科书解读
- 奶龙小组汇报模板
- 水利水电工程质量监督工作标准
- 2024年云南省昆明市五华区小升初数学试卷
- 化工原理完整(天大版)课件
- 2025年元明粉项目可行性研究报告
- 艺术色彩解读
- 冲压生产管理流程
- DB32∕T 1670-2010 小麦纹枯病综合防治技术规程
- 湛江房屋租赁合同书范本
- 2025下半年江苏盐城响水县部分事业单位招聘77人高频重点提升(共500题)附带答案详解
评论
0/150
提交评论