广东省阳江市阳东县2023年高三下学期入学考试试数学试题理试卷_第1页
广东省阳江市阳东县2023年高三下学期入学考试试数学试题理试卷_第2页
广东省阳江市阳东县2023年高三下学期入学考试试数学试题理试卷_第3页
广东省阳江市阳东县2023年高三下学期入学考试试数学试题理试卷_第4页
广东省阳江市阳东县2023年高三下学期入学考试试数学试题理试卷_第5页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

广东省阳江市阳东县2023年高三下学期入学考试试数学试题理试卷注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.设为坐标原点,是以为焦点的抛物线上任意一点,是线段上的点,且,则直线的斜率的最大值为()A. B. C. D.12.已知是第二象限的角,,则()A. B. C. D.3.要得到函数的图象,只需将函数图象上所有点的横坐标()A.伸长到原来的2倍(纵坐标不变),再将得到的图象向右平移个单位长度B.伸长到原来的2倍(纵坐标不变),再将得到的图像向左平移个单位长度C.缩短到原来的倍(纵坐标不变),再将得到的图象向左平移个单位长度D.缩短到原来的倍(纵坐标不变),再将得到的图象向右平移个单位长度4.的展开式中,满足的的系数之和为()A. B. C. D.5.已知平面和直线a,b,则下列命题正确的是()A.若∥,b∥,则∥ B.若,,则∥C.若∥,,则 D.若,b∥,则6.已知四棱锥中,平面,底面是边长为2的正方形,,为的中点,则异面直线与所成角的余弦值为()A. B. C. D.7.阅读下侧程序框图,为使输出的数据为31,则①处应填的数字为A.4 B.5 C.6 D.78.若为虚数单位,则复数在复平面上对应的点位于()A.第一象限 B.第二象限 C.第三象限 D.第四象限9.在中,内角所对的边分别为,若依次成等差数列,则()A.依次成等差数列 B.依次成等差数列C.依次成等差数列 D.依次成等差数列10.用1,2,3,4,5组成不含重复数字的五位数,要求数字4不出现在首位和末位,数字1,3,5中有且仅有两个数字相邻,则满足条件的不同五位数的个数是()A.48 B.60 C.72 D.12011.已知数列an满足:an=2,n≤5a1A.16 B.17 C.18 D.1912.已知双曲线的焦距是虚轴长的2倍,则双曲线的渐近线方程为()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.设是公差不为0的等差数列的前项和,且,则______.14.设Sn为数列{an}的前n项和,若an0,a1=1,且2Sn=an(an+t),n∈N*,则S10=_____.15.古代“五行”学认为:“物质分金、木、土、水、火五种属性,金克木,木克土,土克水,水克火,火克金.”将五种不同属性的物质任意排成一列,但排列中属性相克的两种物质不相邻,则这样的排列方法有_________种.(用数字作答)16.已知集合,若,且,则实数所有的可能取值构成的集合是________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知等差数列满足,公差,等比数列满足,,.求数列,的通项公式;若数列满足,求的前项和.18.(12分)已知椭圆,点为半圆上一动点,若过作椭圆的两切线分别交轴于、两点.(1)求证:;(2)当时,求的取值范围.19.(12分)已知动圆过定点,且与直线相切,动圆圆心的轨迹为,过作斜率为的直线与交于两点,过分别作的切线,两切线的交点为,直线与交于两点.(1)证明:点始终在直线上且;(2)求四边形的面积的最小值.20.(12分)已知函数()在定义域内有两个不同的极值点.(1)求实数的取值范围;(2)若有两个不同的极值点,,且,若不等式恒成立.求正实数的取值范围.21.(12分)已知数列的前n项和为,且n、、成等差数列,.(1)证明数列是等比数列,并求数列的通项公式;(2)若数列中去掉数列的项后余下的项按原顺序组成数列,求的值.22.(10分)在三棱柱中,四边形是菱形,,,,,点M、N分别是、的中点,且.(1)求证:平面平面;(2)求四棱锥的体积.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】试题分析:设,由题意,显然时不符合题意,故,则,可得:,当且仅当时取等号,故选C.考点:1.抛物线的简单几何性质;2.均值不等式.【方法点晴】本题主要考查的是向量在解析几何中的应用及抛物线标准方程方程,均值不等式的灵活运用,属于中档题.解题时一定要注意分析条件,根据条件,利用向量的运算可知,写出直线的斜率,注意均值不等式的使用,特别是要分析等号是否成立,否则易出问题.2、D【解析】

利用诱导公式和同角三角函数的基本关系求出,再利用二倍角的正弦公式代入求解即可.【详解】因为,由诱导公式可得,,即,因为,所以,由二倍角的正弦公式可得,,所以.故选:D【点睛】本题考查诱导公式、同角三角函数的基本关系和二倍角的正弦公式;考查运算求解能力和知识的综合运用能力;属于中档题.3、B【解析】

分析:根据三角函数的图象关系进行判断即可.详解:将函数图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),

得到再将得到的图象向左平移个单位长度得到故选B.点睛:本题主要考查三角函数的图象变换,结合和的关系是解决本题的关键.4、B【解析】

,有,,三种情形,用中的系数乘以中的系数,然后相加可得.【详解】当时,的展开式中的系数为.当,时,系数为;当,时,系数为;当,时,系数为;故满足的的系数之和为.故选:B.【点睛】本题考查二项式定理,掌握二项式定理和多项式乘法是解题关键.5、C【解析】

根据线面的位置关系,结合线面平行的判定定理、平行线的性质进行判断即可.【详解】A:当时,也可以满足∥,b∥,故本命题不正确;B:当时,也可以满足,,故本命题不正确;C:根据平行线的性质可知:当∥,,时,能得到,故本命题是正确的;D:当时,也可以满足,b∥,故本命题不正确.故选:C【点睛】本题考查了线面的位置关系,考查了平行线的性质,考查了推理论证能力.6、B【解析】

由题意建立空间直角坐标系,表示出各点坐标后,利用即可得解.【详解】平面,底面是边长为2的正方形,如图建立空间直角坐标系,由题意:,,,,,为的中点,.,,,异面直线与所成角的余弦值为即为.故选:B.【点睛】本题考查了空间向量的应用,考查了空间想象能力,属于基础题.7、B【解析】考点:程序框图.分析:分析程序中各变量、各语句的作用,再根据流程图所示的顺序,可知:该程序的作用是利用循环求S的值,我们用表格列出程序运行过程中各变量的值的变化情况,不难给出答案.解:程序在运行过程中各变量的值如下表示:Si是否继续循环循环前11/第一圈32是第二圈73是第三圈154是第四圈315否故最后当i<5时退出,故选B.8、D【解析】

根据复数的运算,化简得到,再结合复数的表示,即可求解,得到答案.【详解】由题意,根据复数的运算,可得,所对应的点为位于第四象限.故选D.【点睛】本题主要考查了复数的运算,以及复数的几何意义,其中解答中熟记复数的运算法则,准确化简复数为代数形式是解答的关键,着重考查了推理与运算能力,属于基础题.9、C【解析】

由等差数列的性质、同角三角函数的关系以及两角和的正弦公式可得,由正弦定理可得,再由余弦定理可得,从而可得结果.【详解】依次成等差数列,,正弦定理得,由余弦定理得,,即依次成等差数列,故选C.【点睛】本题主要考查等差数列的定义、正弦定理、余弦定理,属于难题.解三角形时,有时可用正弦定理,有时也可用余弦定理,应注意用哪一个定理更方便、简捷.如果式子中含有角的余弦或边的二次式,要考虑用余弦定理;如果遇到的式子中含有角的正弦或边的一次式时,则考虑用正弦定理;以上特征都不明显时,则要考虑两个定理都有可能用到.10、A【解析】

对数字分类讨论,结合数字中有且仅有两个数字相邻,利用分类计数原理,即可得到结论【详解】数字出现在第位时,数字中相邻的数字出现在第位或者位,共有个数字出现在第位时,同理也有个数字出现在第位时,数字中相邻的数字出现在第位或者位,共有个故满足条件的不同的五位数的个数是个故选【点睛】本题主要考查了排列,组合及简单计数问题,解题的关键是对数字分类讨论,属于基础题。11、B【解析】

由题意可得a1=a2=a3=a4=a5=2,累加法求得a62+【详解】解:an即a1=an⩾6时,a1a1两式相除可得1+a则an2=由a6a7…,ak2=可得aa1且a1正整数k(k⩾5)时,要使得a1则ak+1则k=17,故选:B.【点睛】本题考查与递推数列相关的方程的整数解的求法,注意将题设中的递推关系变形得到新的递推关系,从而可简化与数列相关的方程,本题属于难题.12、A【解析】

根据双曲线的焦距是虚轴长的2倍,可得出,结合,得出,即可求出双曲线的渐近线方程.【详解】解:由双曲线可知,焦点在轴上,则双曲线的渐近线方程为:,由于焦距是虚轴长的2倍,可得:,∴,即:,,所以双曲线的渐近线方程为:.故选:A.【点睛】本题考查双曲线的简单几何性质,以及双曲线的渐近线方程.二、填空题:本题共4小题,每小题5分,共20分。13、18【解析】

先由,可得,再结合等差数列的前项和公式求解即可.【详解】解:因为,所以,.故答案为:18.【点睛】本题考查了等差数列基本量的运算,重点考查了等差数列的前项和公式,属基础题.14、55【解析】

由求出.由,可得,两式相减,可得数列是以1为首项,1为公差的等差数列,即求.【详解】由题意,当n=1时,,当时,由,可得,两式相减,可得,整理得,,即,∴数列是以1为首项,1为公差的等差数列,.故答案为:55.【点睛】本题考查求数列的前项和,属于基础题.15、1.【解析】试题分析:由题意,可看作五个位置排列五种事物,第一位置有五种排列方法,不妨假设排上的是金,则第二步只能从土与水两者中选一种排放,故有两种选择不妨假设排上的是水,第三步只能排上木,第四步只能排上火,第五步只能排上土,故总的排列方法种数有5×2×1×1×1=1.考点:排列、组合及简单计数问题.点评:本题考查排列排列组合及简单计数问题,解答本题关键是理解题设中的限制条件及“五行”学说的背景,利用分步原理正确计数,本题较抽象,计数时要考虑周详.16、.【解析】

化简集合,由,以及,即可求出结论.【详解】集合,若,则的可能取值为,0,2,3,又因为,所以实数所有的可能取值构成的集合是.故答案为:.【点睛】本题考查集合与元素的关系,理解题意是解题的关键,属于基础题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、,;.【解析】

由,公差,有,,成等比数列,所以,解得.进而求出数列,的通项公式;当时,由,所以,当时,由,,可得,进而求出前项和.【详解】解:由题意知,,公差,有1,,成等比数列,所以,解得.所以数列的通项公式.数列的公比,其通项公式.当时,由,所以.当时,由,,两式相减得,所以.故所以的前项和,.又时,,也符合上式,故.【点睛】本题主要考查等差数列和等比数列的概念,通项公式,前项和公式的应用等基础知识;考查运算求解能力,方程思想,分类讨论思想,应用意识,属于中档题.18、(1)见解析;(2).【解析】

(1)分两种情况讨论:①两切线、中有一条切线斜率不存在时,求出两切线的方程,验证结论成立;②两切线、的斜率都存在,可设切线的方程为,将该直线的方程与椭圆的方程联立,由可得出关于的二次方程,利用韦达定理得出两切线的斜率之积为,进而可得出结论;(2)求出点、的坐标,利用两点间的距离公式结合韦达定理得出,换元,可得出,利用二次函数的基本性质可求得的取值范围.【详解】(1)由于点在半圆上,则.①当两切线、中有一条切线斜率不存在时,可求得两切线方程为,或,,此时;②当两切线、的斜率都存在时,设切线的方程为(、的斜率分别为、),,,,.综上所述,;(2)根据题意得、,,令,则,所以,当时,,当时,.因此,的取值范围是.【点睛】本题考查椭圆两切线垂直的证明,同时也考查了弦长的取值范围的计算,考查计算能力,属于中等题.19、(1)见解析(2)最小值为1.【解析】

(1)根据抛物线的定义,判断出的轨迹为抛物线,并由此求得轨迹的方程.设出两点的坐标,利用导数求得切线的方程,由此求得点的坐标.写出直线的方程,联立直线的方程和曲线的方程,根据韦达定理求得点的坐标,并由此判断出始终在直线上,且.(2)设直线的倾斜角为,求得的表达式,求得的表达式,由此求得四边形的面积的表达式进而求得四边形的面积的最小值.【详解】(1)∵动圆过定点,且与直线相切,∴动圆圆心到定点和定直线的距离相等,∴动圆圆心的轨迹是以为焦点的抛物线,∴轨迹的方程为:,设,∴直线的方程为:,即:①,同理,直线的方程为:②,由①②可得:,直线方程为:,联立可得:,,∴点始终在直线上且;(2)设直线的倾斜角为,由(1)可得:,,∴四边形的面积为:,当且仅当或,即时取等号,∴四边形的面积的最小值为1.【点睛】本小题主要考查动点轨迹方程的求法,考查直线和抛物线的位置关系,考查抛物线中四边形面积的最值的计算,考查运算求解能力,属于中档题.20、(1);(2).【解析】

(1)求导得到有两个不相等实根,令,计算函数单调区间得到值域,得到答案.(2),是方程的两根,故,化简得到,设函数,讨论范围,计算最值得到答案.【详解】(1)由题可知有两个不相等的实根,即:有两个不相等实根,令,,,,;,,故在上单增,在上单减,∴.又,时,;时,,∴,即.(2)由(1)知,,是方程的两根,∴,则因为在单减,∴,又,∴即,两

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论