培优专题04构造三角形全等的方法技巧-解析版_第1页
培优专题04构造三角形全等的方法技巧-解析版_第2页
培优专题04构造三角形全等的方法技巧-解析版_第3页
培优专题04构造三角形全等的方法技巧-解析版_第4页
培优专题04构造三角形全等的方法技巧-解析版_第5页
已阅读5页,还剩42页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

培优专题04构造三角形全等的方法技巧◎技巧一:利用“补形法”构造全等三角形“补形法”是指补全图形的方法,主要是利用条件构造与已知三角形全等的三角形,利用全等三角形解决问题。1.(2022·福建漳州·八年级期末)求证:在直角三角形中,若一个锐角等于30°,则它所对的直角边等于斜边的一半.要求:(1)根据给出的线段及∠B,以线段为直角边,在给出的图形上用尺规作出的斜边,使得,保留作图痕迹,不写作法;(2)根据(1)中所作的图形,写出已知、求证和证明过程.【答案】(1)见解析(2)见解析【分析】(1)根据作一个角等于已知角的方法作图即可;(2)根据图形和命题的已知事项写出已知,根据命题的未知事项写出求证,再写出证明过程即可.(1)解:如图所示,线段为所求作的线段;(2)已知:如图,是直角三角形,,.求证:.解法一:如图,在上截取一点,使得,连接.∵,,∴.∵,∴是等边三角形.∴,.∵,∴.∴.∴.∵,∴.解法二:如图,延长至点,使,连接.∵,,∴,,∵,,,∴.∴.∴是等边三角形.∴.∵,∴.【点睛】本题主要考查了用尺规作一个角等于已知角及命题的证明过程的书写格式,掌握相关内容是解题的关键.2.(2022·江苏泰州·九年级专题练习)如图,ABC中,AC=BC,∠ACB=90°,AD平分∠BAC交BC于点D,过点B作BE⊥AD,交AD延长线于点E,F为AB的中点,连接CF,交AD于点G,连接BG.(1)线段BE与线段AD有何数量关系?并说明理由;(2)判断BEG的形状,并说明理由.【答案】(1)BE=AD,见解析;(2)BEG是等腰直角三角形,见解析【分析】(1)延长BE、AC交于点H,先证明△BAE≌△HAE,得BE=HE=BH,再证明△BCH≌△ACD,得BH=AD,则BE=AD;(2)先证明CF垂直平分AB,则AG=BG,再证明∠CAB=∠CBA=45°,则∠GAB=∠GBA=22.5°,于是∠EGB=∠GAB+∠GBA=45°,可证明△BEG是等腰直角三角形.【详解】证:(1)BE=AD,理由如下:如图,延长BE、AC交于点H,∵BE⊥AD,∴∠AEB=∠AEH=90°,∵AD平分∠BAC,∴∠BAE=∠HAE,在△BAE和△HAE中,,∴△BAE≌△HAE(ASA),∴BE=HE=BH,∵∠ACB=90°,∴∠BCH=180°﹣∠ACB=90°=∠ACD,∴∠CBH=90°﹣∠H=∠CAD,在△BCH和△ACD中,,∴△BCH≌△ACD(ASA),∴BH=AD,∴BE=AD.(2)△BEG是等腰直角三角形,理由如下:∵AC=BC,AF=BF,∴CF⊥AB,∴AG=BG,∴∠GAB=∠GBA,∵AC=BC,∠ACB=90°,∴∠CAB=∠CBA=45°,∴∠GAB=∠CAB=22.5°,∴∠GAB=∠GBA=22.5°,∴∠EGB=∠GAB+∠GBA=45°,∵∠BEG=90°,∴∠EBG=∠EGB=45°,∴EG=EB,∴△BEG是等腰直角三角形.【点睛】本题考查等腰直角三角形的判定与性质,全等三角形的判定与性质等,理解等腰直角三角形的基本性质,并且掌握全等三角形中常见辅助线的作法是解题关键.3.(2021·全国·九年级专题练习)如图1,在平面直角坐标系中,直线分别交x轴、y轴于两点,且满足,且是常数,直线平分,交x轴于点D.(1)若的中点为M,连接交于点N,求证:;(2)如图2,过点A作,垂足为E,猜想与间的数量关系,并证明你的猜想.【答案】(1)见解析;(2),证明见解析.【分析】(1)由已知条件可得,进而得,由直线平分及直角三角形斜边上中线的性质得,再由三角形的外角定理,分别求得,根据角度的等量代换,即可得,最后由等角对等边的性质即可得证;(2)如图,延长交轴于点,先证明,得,再证明,即可得.【详解】(1),,,,直线平分,,为的中点,,,,,,,,.(2),证明:如图,延长交轴于点,直线平分,,,,又,(ASA),,,,即,,又,(ASA),,即.【点睛】本题考查了平面直角坐标系的定义,非负数之和为零,三角形角平分线的定义,三角形中线的性质,三角形外角定理,三角形全等的性质与判定,等角对等边,熟练掌握以上知识,添加辅助线是解题的关键.4.(2021·全国·八年级课时练习)在△ABC中,AB=AC,将线段AC绕着点C逆时针旋转得到线段CD,旋转角为,且,连接AD、BD.(1)如图1,当∠BAC=100°,时,∠CBD的大小为_________;(2)如图2,当∠BAC=100°,时,求∠CBD的大小;(3)已知∠BAC的大小为m(),若∠CBD的大小与(2)中的结果相同,请直接写出的大小.【答案】(1)30°;(2)30°;(3)为或或.【分析】(1)由,,可以确定,旋转角为,时是等边三角形,且,知道的度数,进而求得的大小;(2)由,,可以确定,连接、.,,,由案.依次证明,.利用角度相等可以得到答案.(3)结合(1)(2)的解题过程可以发现规律,是等边三角形时,在内部时,在外部时,求得答案.【详解】解:(1)解(1)∵,,∴,∵,,∴为等边三角形,∴.又∵,∴为等腰三角形,∴,∴.(2)方法1:如图作等边,连接、.,.,,.,..①,,.②,③由①②③,得,,.,,.,,...④,,.⑤,⑥由④⑤⑥,得.....方法2如下图所示,构造等边三角形ADE,连接CE.∵在等腰三角形ACD中,,∴,∵,∴.可证.结合角度,可得,.在和中,,∴,∴.∵,∴.方法3如下图所示,平移CD至AE,连接ED,EB,则四边形ACDE是平行四边形.∵,∴四边形ACDE是菱形,∴,.∴,∴,∴是等边三角形,是等腰三角形,∴,,∴.∴.(3)由(1)知道,若,时,则;①由(1)可知,设时可得,,,.②由(2)可知,翻折到△,则此时,,,③以为圆心为半径画圆弧交的延长线于点,连接,,.综上所述,为或或时,.【点睛】本题是一道几何结论探究题,解答这类题目的关键是要善于从探究特殊结论中归纳出一般性解题方法,并灵活运用这种方法解答一般性的问题,真正达到举一反三的目的.◎技巧二:利用“截长补短法”构造全等三角形“截长补短”是处理线段间数量关系的一种重要的解题方法.当题目中出现三条线段间的和差关系时(如a=b+c),常考虑用此法解决.所谓"截",就是将最长的线段a截成两段,使其中一段等于较短的一条线段b,再利用全等三角形或者等腰三角形的知识证另一段等于线段c;所谓"补",就是将较短的线段6延长,使延长的线段长度为c,相当于将线段b,c拼成一条线段,再证明此线段的长等于a.用截长补短法解决问题的关键,是用"截"或"补"的手段去构造线段.5.(2022·江西·景德镇七年级期末)如图,在△ABC中,∠A=100°,AB=AC,BE是∠ABC的平分线,求证:AE+BE=BC.【答案】见解析【分析】延长BE到F,使BF=BC,连接FC,由AB=AC,∠A=100°,得到∠ABC=∠ACB=40°,由于BE平分∠ABC,于是得到∠ABE=∠EBC=20°,通过△FCE≌△F′CE,得到EF=EF′,∠EF′C=∠F=80°,证得△ABE≌△F′BE,于是得到AE=EF′,于是得到结论.【详解】解:如图,延长BE到F,使BF=BC,连接FC,∵AB=AC,∠A=100°,∴∠ABC=∠ACB=40°,∵BE平分∠ABC,∴∠ABE=∠EBC=20°,∵BF=BC,∴∠F=∠BCF=80°,∴∠FCE=∠ACB=40°,在BC上取CF′=CF,连接EF′,在△FCE与△F′CE中,,∴△FCE≌△F′CE(SAS),∴EF=EF′,∠EF′C=∠F=80°,∴∠BF′E=100°,∴∠A=∠BF′E,在△ABE与△F′BE中,,∴△ABE≌△F′BE(AAS),∴AE=EF′,∴AE=EF,∴AE+BE=BE+EF=BC.【点睛】本题考查了全等三角形的判定和性质,角平分线的性质,等腰三角形的性质,作辅助线构建全等三角形是解题的关键.6.(2022·辽宁·阜新实验七年级期末)问题背景:如图1:在四边形ABCD中,AB=AD.∠BAD=120°.∠B=∠ADC=90°.E,F分别是BC.CD上的点,且∠EAF=60°,探究图中线段BE,EF,FD之间的数量关系.(1)小王同学探究此问题的方法是:延长FD到点G.使DG=BE.连接AG,先证明△ABE≌△ADG,再证明△AEF≌△AGF,可得出结论,他的结论应是;(直接写结论,不需证明)探索延伸:(2)如图2,若在四边形ABCD中,AB=AD,∠B+∠ADF=180°.E,F分别是BC,CD上的点,且∠EAF=∠BAD,(1)中结论是否仍然成立,并说明理由;(3)如图3,在四边形ABCD中,AB=AD,∠B+∠ADC=180°,E、F分别是边BC、CD延长线上的点,且∠EAF=∠BAD,(1)中的结论是否仍然成立?若成立,请证明:若不成立,请直接写出它们之间的数量关系.【答案】(1)EF=BE+FD(2)(1)中的结论EF=BE+FD仍然成立.证明见解析;(3)结论EF=BE+FD不成立,结论是:EF=BE-FD.证明见解析.【分析】(1)延长FD到点G.使DG=BE.连接AG,利用全等三角形的性质解决问题即可;(2)延长CB至M,使BM=DF,连接AM.证明△ABM≌△ADF(SAS),由全等三角形的性质得出AF=AM,∠2=∠3.△AME≌△AFE(SAS),由全等三角形的性质得出EF=ME,即EF=BE+BM,则可得出结论;(3)在BE上截取BG,使BG=DF,连接AG.证明△ABG≌△ADF(SAS).由全等三角形的性质得出∠BAG=∠DAF,AG=AF.证明△AEG≌△AEF(SAS),由全等三角形的性质得出结论.(1)解:EF=BE+FD.延长FD到点G.使DG=BE.连接AG,∵∠ABE=∠ADG=∠ADC=90°,AB=AD,∴△ABE≌△ADG(SAS).∴AE=AG,∠BAE=∠DAG.∴∠BAE+∠DAF=∠DAG+∠DAF=∠EAF=60°.∴∠GAF=∠EAF=60°.又∵AF=AF,∴△AGF≌△AEF(SAS).∴FG=EF.∵FG=DF+DG.∴EF=BE+FD.故答案为:EF=BE+FD;(2)解:(1)中的结论EF=BE+FD仍然成立.证明:如图②中,延长CB至M,使BM=DF,连接AM.∵∠ABC+∠D=180°,∠1+∠ABC=180°,∴∠1=∠D,在△ABM与△ADF中,,∴△ABM≌△ADF(SAS).∴AF=AM,∠2=∠3.∵∠EAF=∠BAD,∴∠2+∠4=∠BAD=∠EAF.∴∠3+∠4=∠EAF,即∠MAE=∠EAF.在△AME与△AFE中,,∴△AME≌△AFE(SAS).∴EF=ME,即EF=BE+BM,∴EF=BE+DF;(3)解:结论EF=BE+FD不成立,结论:EF=BE-FD.证明:如图③中,在BE上截取BG,使BG=DF,连接AG.∵∠B+∠ADC=180°,∠ADF+∠ADC=180°,∴∠B=∠ADF.在△ABG与△ADF中,,∴△ABG≌△ADF(SAS).∴∠BAG=∠DAF,AG=AF.∴∠BAG+∠EAD=∠DAF+∠EAD=∠EAF=∠BAD.∴∠GAE=∠EAF.∵AE=AE,∴△AEG≌△AEF(SAS),∴EG=EF,∵EG=BE-BG,∴EF=BE-FD.【点睛】本题是三角形综合题,考查了三角形全等的判定和性质等知识,解题的关键是添加辅助线,构造全等三角形解决问题.7.(2022·江苏·八年级专题练习)在等边三角形ABC的两边AB、AC所在直线上分别有两点M、N,P为△ABC外一点,且∠MPN=60°,∠BPC=120°,BP=CP.探究:当点M、N分别在直线AB、AC上移动时,BM,NC,MN之间的数量关系.(1)如图①,当点M、N在边AB、AC上,且PM=PN时,试说明MN=BM+CN.(2)如图②,当点M、N在边AB、AC上,且PM≠PN时,MN=BM+CN还成立吗?答:.(请在空格内填“一定成立”“不一定成立”或“一定不成立”).(3)如图③,当点M、N分别在边AB、CA的延长线上时,请直接写出BM,NC,MN之间的数量关系.

【答案】(1)见解析(2)一定成立(3)MN=NC﹣BM【分析】(1)根据等腰三角形的性质、三角形内角和定理得到∠PBC=∠=30°,进而得到∠PBM=∠PCN=90°,证明Rt△PBM≌Rt△PCN,得到∠BPM=∠CPN=30°,根据含30°角的直角三角形的性质证明结论;(2)延长AC至H,使CH=BM,连接PH,证明△PBM≌△PCH,得到PM=PH,∠BPM=∠CPH,再证明△MPN≌△HPN,得到MN=HN,等量代换得到答案;(3)在AC上截取CK=BM,连接PK,仿照(2)的方法得出结论.(1)证明:∵△ABC为等边三角形,∴∠ABC=∠ACB=60°,∵∠BPC=120°,BP=CP,∴∠PBC=∠PCB=×(180°﹣120°)=30°,∴∠PBM=∠PCN=90°,在Rt△PBM和Rt△PCN中,,∴Rt△PBM≌Rt△PCN(HL),∴∠BPM=∠CPN=30°,∵∠MPN=60°,PM=PN,∴△PMN为等边三角形,∴PM=PN=MN,在Rt△PBM中,∠BPM=30°,∴BM=PM,同理可得,CN=PN,∴BM+CN=MN.(2)解:一定成立,理由如下:延长AC至H,使CH=BM,连接PH,如图所示,由(1)可知:∠PBM=∠PCN=90°,∴∠PCH=90°,∴∠PBM=∠PCH,在△PBM和△PCH中,,∴△PBM≌△PCH(SAS),∴PM=PH,∠BPM=∠CPH,∵∠BPM+∠CPN=60°,∴∠CPN+∠CPH=60°,∴∠MPN=∠HPN,在△MPN和△HPN中,,∴△MPN≌△HPN(SAS),∴MN=HN=BM+CN,故答案为:一定成立.(3)解:在AC上截取CK=BM,连接PK,如图所示,在△PBM和△PCK中,,∴△PBM≌△PCK(SAS),∴PM=PK,∠BPM=∠CPK,∵∠BPM+∠BPN=60°,∴∠CPK+∠BPN=60°,∴∠KPN=60°,∴∠MPN=∠KPN,在△MPN和△KPN中,,∴△MPN≌△KPN(SAS),∴MN=KN,∵KN=NC﹣CK=NC﹣BM,∴MN=NC﹣BM.【点睛】本题考查的是全等三角形的判定和性质、等边三角形的性质,掌握全等三角形的判定定理和性质定理是解题的关键.8.(2022·全国·八年级课时练习)阅读下面材料:【原题呈现】如图1,在ABC中,∠A=2∠B,CD平分∠ACB,AD=2.2,AC=3.6,求BC的长.【思考引导】因为CD平分∠ACB,所以可在BC边上取点E,使EC=AC,连接DE.这样很容易得到DEC≌DAC,经过推理能使问题得到解决(如图2).【问题解答】(1)参考提示的方法,解答原题呈现中的问题;(2)拓展提升:如图3,已知ABC中,AB=AC,∠A=20°,BD平分∠ABC,BD=2.3,BC=2.求AD的长.【答案】(1)5.8;(2)4.3【分析】(1)由已知条件和辅助线的作法,证得△ACD≌△ECD,得到AD=DE,∠A=∠DEC,由于∠A=2∠B,推出∠DEC=2∠B,等量代换得到∠B=∠EDB,得到△BDE是等腰三角形,得出AC=CE=3.6,DE=BE=2.2,相加可得BC的长;(2)在BA边上取点E,使BE=BC=2,连接DE,得到△DEB≌△DBC(SAS),在DA边上取点F,使DF=DB,连接FE,得到△BDE≌△FDE,即可推出结论.【详解】解:(1)如图2,在BC边上取点E,使EC=AC,连接DE.在△ACD与△ECD中,,∴△ACD≌△ECD(SAS),∴AD=DE,∠A=∠DEC,∵∠A=2∠B,∴∠DEC=2∠B,∴∠B=∠EDB,∴△BDE是等腰三角形;∴BE=DE=AD=2.2,AC=EC=3.6,∴BC的长为5.8;(2)∵△ABC中,AB=AC,∠A=20°,∴∠ABC=∠C=80°,∵BD平分∠B,∴∠1=∠2=40°,∠BDC=60°,在BA边上取点E,使BE=BC=2,连接DE,在△DEB和△DBC中,,∴△DEB≌△DBC(SAS),∴∠BED=∠C=80°,∴∠4=60°,∴∠3=60°,在DA边上取点F,使DF=DB,连接FE,同理可得△BDE≌△FDE,∴∠5=∠1=40°,BE=EF=2,∵∠A=20°,∴∠6=20°,∴AF=EF=2,∵BD=DF=2.3,∴AD=BD+BC=4.3.【点睛】本题考查了全等三角形的性质与判定,等腰三角形的性质,熟悉这些定理是解决本题的关键.◎技巧三:利用“倍长中线法”构造全等三角形中线是三角形中的重要线段之一,在利用中线解决几何问题时,常常采用“倍长中线法”添加辅助线.倍长中线法:就是将三角形的中线延长一倍,以便构造出全等三角形,从而运用全等三角形的有关知识来解决问题的方法.倍长中线法的过程:延长某某到某点,使某某等于某某,使什么等于什么(延长的那一条),用SAS证全等(对顶角相等)倍长中线最重要的一点:延长中线一倍,完成SAS全等三角形模型的构造。【方法讲解】常用辅助线添加方法——倍长中线△ABC中,AD是BC边中线,如图一图一图二方式1:延长AD到E,使DE=AD,连接BE如图二结论:方式2:间接倍长如图三:作CF⊥AD于F,作BE⊥AD的延长线于E;如图四:延长MD到N,使DN=MD,连接CN,图三图四9.(2022·全国·八年级课时练习)已知:多项式x2+4x+5可以写成(x﹣1)2+a(x﹣1)+b的形式.(1)求a,b的值;(2)△ABC的两边BC,AC的长分别是a,b,求第三边AB上的中线CD的取值范围.【答案】(1),(2)2<CD<8【分析】(1)把展开,然后根据多项式x2+4x+5可以写成(x﹣1)2+a(x﹣1)+b的形式,可得,即可求解;(2)延长CD至点H,使CD=DH,连接AH,可得△CDB≌△HAD,从而得到BC=AH=a=6,再根据三角形的三边关系,即可求解.(1)解:∵,根据题意得:x2+4x+5=(x﹣1)2+a(x﹣1)+b∴,解得:;(2)解:如图,延长CD至点H,使CD=DH,连接AH,∵CD是AB边上的中线,∴BD=AD,在△CDB和△HDA中,∵CD=DH,∠CDB=∠ADH,BD=DA,∴△CDB≌△HDA(SAS),∴BC=AH=a=6,在△ACH中,AC-AH<CH<AC+AH,∴10-6<2CD<10+6,∴2<CD<8.【点睛】本题主要考查了全等三角形的判定和性质,整式乘法和二元一次方程组的应用,三角形的三边关系,熟练掌握全等三角形的判定和性质,整式乘法法则,三角形的三边关系是解题的关键.10.(2022·全国·八年级专题练习)数学兴趣小组在活动时,老师提出了这样一个问题:如图1,在中,,,D是BC的中点,求BC边上的中线AD的取值范围.【阅读理解】小明在组内经过合作交流,得到了如下的解决方法:(1)如图1,延长AD到E点,使,连接BE.根据______可以判定______,得出______.这样就能把线段AB、AC、集中在中.利用三角形三边的关系,即可得出中线AD的取值范围是.【方法感悟】当条件中出现“中点”、“中线”等条件时,可以考虑做“辅助线”——把中线延长一倍,构造全等三角形,把分散的已知条件和所求证的结论集中到同一个三角形中,这种做辅助线的方法称为“中线加倍”法.【问题解决】(2)如图2,在中,,D是BC边的中点,,DE交AB于点E,DF交AC于点F,连接EF,求证:.【问题拓展】(3)如图3,中,,,AD是的中线,,,且.直接写出AE的长=______.【答案】(1);;;;(2)见解析;(3)8.【分析】(1)根据三角形全等的判定方法和全等三角形的性质以及三角形三边的关系求解即可;(2)延长ED使DG=ED,连接FG,GC,根据垂直平分线的性质得到,然后利用SAS证明,得到,,进而得到,最后根据勾股定理证明即可;(3)延长AD交EC的延长线于点F,根据ASA证明,然后根据垂直平分线的性质得到,最后根据全等三角形的性质求解即可.【详解】解:(1)在和中,∴,∴.∵,∴,即,∴,∴,解得:;故答案为:;;;;(2)如图所示,延长ED使DG=ED,连接FG,GC,∵,∴,在和中,∴,∴,,∴,∴,∴在中,,∴;(3)如图所示,延长AD交EC的延长线于点F,∵,,在和中,,∴,,∵,∴,∵,∴.【点睛】此题考查了全等三角形的性质和判定方法,三角形的三边关系,“中线加倍”法的运用,解题的关键是根据题意作出辅助线构造全等三角形.11.(2022·全国·八年级课时练习)【观察发现】如图①,△ABC中,AB=7,AC=5,点D为BC的中点,求AD的取值范围.小明的解法如下:延长AD到点E,使DE=AD,连接CE.在△ABD与△ECD中∴△ABD≅△ECD(SAS)∴AB=.又∵在△AEC中EC﹣AC<AE<EC+AC,而AB=EC=7,AC=5,∴<AE<.又∵AE=2AD.∴<AD<.【探索应用】如图②,ABCD,AB=25,CD=8,点E为BC的中点,∠DFE=∠BAE,求DF的长为.(直接写答案)【应用拓展】如图③,∠BAC=60°,∠CDE=120°,AB=AC,DC=DE,连接BE,P为BE的中点,求证:AP⊥DP.【答案】观察发现:EC,2,12,1,6;探索应用:17;应用拓展:见解析【分析】观察发现:由“SAS”可证△ABD≌△ECD,可得AB=EC,由三角形的三边关系可求解;探索应用:由“SAS”可证△ABE≌△HCE,可得AB=CH=25,即可求解;应用拓展:由“SAS”可证△BPA≌△EPF,可得AB=FE,∠PBA=∠PEF,由“SAS”可证△ACD≌△FED,可得AD=FD,由等腰三角形的性质可得结论.【详解】观察发现解:如图①,延长AD到点E,使DE=AD,连接CE,在△ABD与△ECD中,,∴△ABD≌△ECD(SAS),∴AB=EC,在△AEC中,EC-AC<AE<EC+AC,而AB=EC=7,AC=5,∴2<AE<12.又∵AE=2AD,∴1<AD<6,故答案为:EC,2,12,1,6;探索应用解:如图2,延长AE,CD交于H,∵点E是BC的中点,∴BE=CE,∵CD∥AB,∴∠ABE=∠ECH,∠H=∠BAE,∴△ABE≌△HCE(AAS),∴AB=CH=25,∴DH=CH-CD=17,∵∠DFE=∠BAE,∴∠H=∠DFE,∴DF=DH=17,故答案为:17;应用拓展证明:如图2,延长AP到点F,使PF=AP,连接DF,EF,AD,在△BPA与△EPF中,,∴△BPA≌△EPF(SAS),∴AB=FE,∠PBA=∠PEF,∵AC=BC,∴AC=FE,在四边形BADE中,∠BAD+∠ADE+∠DEB+∠EBA=360°,∵∠BAC=60°,∠CDE=120°,∴∠CAD+∠ADC+∠DEB+∠EBA=180°.∵∠CAD+∠ADC+∠ACD=180°,∴∠ACD=∠DEB+∠EBA,∴∠ACD=∠FED,在△ACD与△FED中,,∴△ACD≌△FED(SAS),∴AD=FD,∵AP=FP,∴AP⊥DP.【点睛】本题是三角形综合题,考查了全等三角形的性质、等腰三角形的性质等知识,作出恰当的辅助线,证得三角形全等是解答此题的关键.12.(2021·湖北武汉·八年级期中)已知中,(1)如图1,点E为的中点,连并延长到点F,使,则与的数量关系是________.(2)如图2,若,点E为边一点,过点C作的垂线交的延长线于点D,连接,若,求证:.(3)如图3,点D在内部,且满足,,点M在的延长线上,连交的延长线于点N,若点N为的中点,求证:.【答案】(1);(2)见解析;(3)见解析【分析】(1)通过证明,即可求解;(2)过点A引交于点F,通过得到,再通过即可求解;(3)过点作交的延长线于点,,在上取一点,使得,连接,利用全等三角形的性质证明、,即可解决.【详解】证明:(1)由题意可得:在和中∴∴(2)过点A引交于点F,如下图:由题意可得:,且则又∵∴平分,∴∴在和中∴∴在和中∴∴(3)证明:过点作交的延长线于点,,在上取一点,使得,连接,如下图:∵∴∵,∴∴,∵∴∵∴∴∴∵∴∵∴∵∴又∵∴∴∴∴∴∵∴【点睛】本题属于三角形综合题,考查了全等三角形的判定与性质,等腰三角形的判定与性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题.◎技巧四:利用“旋转法”构造全等三角形在解决等边三角形、正方形或者顶角为特殊的等腰三角形时,若条件较为分散,可考虑利用旋转构造全等三角形,可高效突破有关难题。手拉手模型便是由两个同顶角的等腰三角形形成,可看成两个全等三角形旋转而得,这便体现了全等三角形和旋转之间的关系!熟悉手拉手模型2.遇60°,120°构全等关键:抓住相等的边,旋转点,以及旋转后图形的特征3.遇45°,135°构造全等通过全等构造,将线段转化到直角三角形中以上这些,将会在另外专题中讲到。13.(2021·湖北黄冈·八年级阶段练习)Rt中,∠ACB=90°,AC=BC,点E为△ABC外一点,且∠CEA=45°.求证:AE⊥BE.【答案】见解析【分析】首先过点作交的延长线于,易证得,即可得,继而证得.【详解】证明:过点作交的延长线于,,,,,,在和中,,,,,即.【点睛】此题考查了全等三角形的判定与性质以及等腰三角形的性质.此题难度较大,解题的关键是准确作出辅助线构造旋转全等模型.14.(2022·全国·八年级单元测试)(1)问题引入:如图1,点F是正方形ABCD边CD上一点,连接AF,将ADF绕点A顺时针旋转90°与ABG重合(D与B重合,F与G重合,此时点G,B,C在一条直线上),∠GAF的平分线交BC于点E,连接EF,判断线段EF与GE之间有怎样的数量关系,并说明理由.(2)知识迁移:如图2,在四边形ABCD中,∠ADC+∠B=180°,AB=AD,E,F分别是边BC,CD延长线上的点,连接AE,AF,且∠BAD=2∠EAF,试写出线段BE,EF,DF之间的数量关系,并说明理由.(3)实践创新:如图3,在四边形ABCD中,∠ABC=90°,AC平分∠DAB,点E在AB上,连接DE,CE,且∠DAB=∠DCE=60°,若DE=a,AD=b,AE=c,求BE的长.(用含a,b,c的式子表示)【答案】(1)EF=GE,理由见详解;(2)BE−DF=EF,理由见详解;(3)BE=,理由见详解【分析】(1)根据SAS直接可证△GAE≌△FAE即得GE=EF;(2)在BE上取BG=DF,连接AG,由∠ADC+∠B=180°,∠ADF+∠ADC=180°,得∠B=∠ADF,从而SAS证△ABG≌△ADF,再通过SAS证△GAE≌△FAE,得GE=EF,从而解决问题;(3)作CF⊥AD,交AD的延长线于F,取FG=BE,连接CG,由(2)同理可两次全等证明出DE=GD即可.【详解】解:(1)EF=GE,理由如下:∵△ADF绕点A顺时针旋转90°与△ABG重合,∴AG=AF,∵AE平分∠GAF,∴∠GAE=∠FAE,在△GAE和△FAE中,,∴△GAE≌△FAE(SAS),∴GE=EF;(2)BE−DF=EF,理由如下:如图2,在BE上取BG=DF,连接AG,∵∠ADC+∠B=180°,∠ADF+∠ADC=180°,∴∠B=∠ADF,在△ABG和△ADF中,,∴△ABG≌△ADF(SAS),∴∠BAG=∠FAD,AG=AF,∵∠BAD=2∠EAF,∴∠GAF=2∠EAF,∴∠GAE=∠EAF,在△GAE和△FAE中,∴△GAE≌△FAE(SAS),∴GE=EF,∴BE−DF=EF;(3)如图,作CF⊥AD,交AD的延长线于F,取FG=BE,连接CG,∵AC平分∠BAD,CF⊥AF,CB⊥AB,∴CF=CB,∠EBC=∠GFC,∵BE=GF,∴△CBE≌△CFG(SAS),∴∠BCE=∠FCG,CG=CE,∵∠DAB=60°,∴∠FCB=120°,∵∠DCE=60°,∴∠DCF+∠BCE=60°,∴∠DCG=60°,又∵CG=CE,∴△ECD≌△GCD(SAS),∴GD=DE,∵Rt△ACF≌Rt△ACB(HL),∴AF=AB,∴b+a−BE=c+BE,∴BE=.【点睛】本题主要考查了全等的判定与性质,结合问题引入,构造出全等三角形是解题的关键.15.(2021·全国·九年级专题练习)如图,△OAB和△OCD中,OA=OB,OC=OD,∠AOB=∠COD=,AC、BD交于M(1)如图1,当=90°时,∠AMD的度数为°;(2)如图2,当=60°时,求∠AMD的度数;(3)如图3,当△OCD绕O点任意旋转时,∠AMD与是否存在着确定的数量关系?如果存在,请你用表示∠AMD,不用证明;若不确定,说明理由.【答案】(1)90;(2)120°;(3)存在,∠AMD=180°﹣【分析】(1)如图1中,设OA交BD于K.只要证明△BOD≌△AOC,推出∠OBD=∠OAC,由∠AKM=∠BKO,得∠AMK=∠BOK=90°可得结论.(2)如图2中,设OA交BD于K.只要证明△BOD≌△AOC,推出∠OBD=∠OAC,由∠AKM=∠BKO,推出∠AMK=∠BOK=60°可得结论.(3)如图3中,设OB交AC于K.只要证明△BOD≌△AOC,可得∠OBD=∠OAC,由∠AKO=∠BKM,推出∠AOK=∠BMK=α.可得∠AMD=180°-α;【详解】解:(1)如图1中,设OA交BD于K.∵OA=OB,OC=OD,∠AOB=∠COD=α,∴∠BOD=∠AOC,∴△BOD≌△AOC,∴∠OBD=∠OAC,∵∠AKM=∠BKO,∴∠AMK=∠BOK=90°,∴∠AMD=180°-90°=90°.故答案为90.(2)如图2中,设OA交BD于K.∵OA=OB,OC=OD,∠AOB=∠COD=α,∴∠BOD=∠AOC,∴△BOD≌△AOC,∴∠OBD=∠OAC,∵∠AKM=∠BKO,∴∠AMK=∠BOK=60°,∴∠AMD=180°-60°=120°,(3)如图3中,设OB交AC于K.∵OA=OB,OC=OD,∠AOB=∠COD=α,∴∠BOD=∠AOC,∴△BOD≌△AOC,∴∠OBD=∠OAC,∵∠AKO=∠BKM,∴∠AOK=∠BMK=α.∴∠AMD=180°-α.【点睛】本题考查几何变换综合题、等腰三角形的性质等知识,解题的关键是灵活运用所学知识解决问题,学会利用:“8字型”证明角相等.◎技巧五:利用“作垂线法”构造全等三角形16.(2022·全国·八年级课时练习)阅读下面的题目及分析过程,并按要求进行证明.已知:如图,点E是BC的中点,点A在DE上,且∠BAE=∠CDE.求证:AB=CD.分析:证明两条线段相等,常用的方法是应用全等三角形或等腰三角形的判定和性质,观察本题中要证明的两条线段,它们不在同一个三角形中,且它们分别所在的两个三角形也不全等,因此,要证AB=CD,必须添加适当的辅助线,构造全等三角形或等腰三角形.(1)现给出如下两种添加辅助线的方法,请任意选出其中一种,对原题进行证明.①如图1,延长DE到点F,使EF=DE,连接BF;②如图2,分别过点B、C作BF⊥DE,CG⊥DE,垂足分别为点F,G.(2)请你在图3中添加不同于上述的辅助线,并对原题进行证明.【答案】(1)①见解析;②见解析;(2)见解析;【分析】(1)①如图1,延长DE到点F,使EF=DE,连接BF,△BEF≌△CED,∠BAE=∠F,AB=CD;②如图2,分别过点B、C作BF⊥DE,CG⊥DE,垂足分别为点F,G,△BEF≌△CEG△BAF≌△CDG,AB=CD;(2)如图3,过C点作CM∥AB,交DE的延长线于点M,则∠BAE=∠EMC,△BAE≌△CFE(AAS),∠F=∠EDC,CF=CD,AB=CD;【详解】(1)①如图1,延长DE到点F,使EF=DE,连接BF,∵点E是BC的中点,∴BE=CE,在△BEF和△CED中,,∴△BEF≌△CED(SAS),∴BF=CD,∠F=∠CDE,∵∠BAE=∠CDE,∴∠BAE=∠F,∴AB=BF,∴AB=CD;②如图2,分别过点B、C作BF⊥DE,CG⊥DE,垂足分别为点F,G,∴∠F=∠CGE=∠CGD=90°,∵点E是BC的中点,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论