![勾股定理的历史_第1页](http://file4.renrendoc.com/view/870853ea88ccac500590d2b3dc4de81d/870853ea88ccac500590d2b3dc4de81d1.gif)
![勾股定理的历史_第2页](http://file4.renrendoc.com/view/870853ea88ccac500590d2b3dc4de81d/870853ea88ccac500590d2b3dc4de81d2.gif)
![勾股定理的历史_第3页](http://file4.renrendoc.com/view/870853ea88ccac500590d2b3dc4de81d/870853ea88ccac500590d2b3dc4de81d3.gif)
![勾股定理的历史_第4页](http://file4.renrendoc.com/view/870853ea88ccac500590d2b3dc4de81d/870853ea88ccac500590d2b3dc4de81d4.gif)
![勾股定理的历史_第5页](http://file4.renrendoc.com/view/870853ea88ccac500590d2b3dc4de81d/870853ea88ccac500590d2b3dc4de81d5.gif)
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
-PAGE4-勾股定理的历史勾股定理是“人类最伟大的十个科学发现之一”,是初等几何中的一个基本定理。那么大家知道多少勾股定理的别称呢?我可以告诉大家,有:毕达哥拉斯定理,商高定理,百牛定理,驴桥定理和埃及三角形等。所谓勾股定理,就是指“在直角三角形中,两条直角边的平方和等于斜边的平方。”这个定理有十分悠久的历史,几乎所有文明古国(希腊、中国、埃及、巴比伦、印度等)对此定理都有所研究。勾股定理在西方被称为毕达哥拉斯定理,相传是古希腊数学家兼哲学家毕达哥拉斯(Pythagoras,公元前572?~公元前497?)于公元前550年首先发现的。但毕达哥拉斯对勾股定理的证明方法已经失传。著名的希腊数学家欧几里得(Euclid,公元前330~公元前275)在巨著《几何原本》(第Ⅰ卷,命题47)中给出一个很好的证明。(右图为欧几里得和他的证明图)中国古代对这一数学定理的发现和应用,远比毕达哥拉斯早得多。中国最早的一部数学著作——《周髀算经》的开头,记载着一段周公向商高请教数学知识的对话:周公问:“我听说您对数学非常精通,我想请教一下:天没有梯子可以上去,地也没法用尺子去一段一段丈量,那么怎样才能得到关于天地得到数据呢?”商高回答说:“数的产生来源于对方和圆这些形体的认识。其中有一条原理:当直角三角形‘矩'得到的一条直角边‘勾'等于3,另一条直角边’股'等于4的时候,那么它的斜边'弦'就必定是5。这个原理是大禹在治水的时候就总结出来的呵。”
如果说大禹治水因年代久远而无法确切考证的话,那么周公与商高的对话则可以确定在公元前1100年左右的西周时期,比毕达哥拉斯要早了五百多年。其中所说的勾3股4弦5,正是勾股定理的一个应用特例。所以现在数学界把它称为“勾股定理”是非常恰当的。在稍后一点的《九章算术》一书中(约在公元50至100年间)(右图),勾股定理得到了更加规范的一般性表达。书中的《勾股章》说;“把勾和股分别自乘,然后把它们的积加起来,再进行开方,便可以得到弦”。中国古代的数学家们不仅很早就发现并应用勾股定理,而且很早就尝试对勾股定理作理论的证明。最早对勾股定理进行证明的,是三国时期吴国的数学家赵爽。赵爽创制了一幅“勾股圆方图”,用形数结合得到方法,给出了勾股定理的详细证明(右图)。赵爽的这个证明可谓别具匠心,极富创新意识。他用几何图形的截、割、拼、补来证明代数式之间的恒等关系,既具严密性,又具直观性,为中国古代以形证数、形数统一、代数和几何紧密结合、互不可分的独特风格树立了一个典范。以后的数学家大多继承了这一风格并且有发展,只是具体图形的分合移补略有不同而已。例如稍后一点的刘徽在证明勾股定理时也是用以形证数的方法,中国古代数学家们对于勾股定理的发现和证明,在世界数学史上具有独特的贡献和地位。尤其是其中体现出来的“形数统一”的思想方法,更具有科学创新的重大意义。勾股定理的证明据不完全统计,勾股定理的证明方法已经多达400多种了。下面我便向大家介绍几种十分著名的证明方法。【证法1】(赵爽证明)以a、b为直角边(b>a),以c为斜边作四个全等的直角三角形,则每个直角三角形的面积等于.把这四个直角三角形拼成如图所示形状.∵RtΔDAH≌RtΔABE,∴∠HDA=∠EAB.∵∠HAD+∠HAD=90º,∴∠EAB+∠HAD=90º,∴ABCD是一个边长为c的正方形,它的面积等于c2.∵EF=FG=GH=HE=b―a,∠HEF=90º.∴EFGH是一个边长为b―a的正方形,它的面积等于.∴,即【证法6】(邹元治证明)以a、b为直角边,以c为斜边做四个全等的直角三角形,则每个直角三角形的面积等于.把这四个直角三角形拼成如图所示形状,使A、E、B三点在一条直线上,B、F、C三点在一条直线上,C、G、D三点在一条直线上.∵RtΔHAE≌RtΔEBF,∴∠AHE=∠BEF.∵∠AEH+∠AHE=90º,∴∠AEH+∠BEF=90º.∴∠HEF=180º―90º=90º.∴四边形EFGH是一个边长为c的正方形.它的面积等于c2.∵RtΔGDH≌RtΔHAE,∴∠HGD=∠EHA.∵∠HGD+∠GHD=90º,∴∠EHA+∠GHD=90º.又∵∠GHE=90º,∴∠DHA=90º+90º=180º.∴ABCD是一个边长为a+b的正方形,它的面积等于.∴.∴.【证法7】(利用切割线定理证明)在RtΔABC中,设直角边BC=a,AC=b,斜边AB=c.如图,以B为圆心a为半径作圆,交AB及AB的延长线分别于D、E,则BD=BE=BC=a.因为∠BCA=90º,点C在⊙B上,所以AC是⊙B的切线.由切割线定理,得===,即,∴.【证法8】(作直角三角形的内切圆证明)在RtΔABC中,设直角边BC=a,AC=b,斜边AB=c.作RtΔABC的内切圆⊙O,切点分别为D、E、F(如图),设⊙O的半径为r.∵AE=AF,BF=BD,CD=CE,∴==r+r=2r,即,∴.∴,即,∵,∴,又∵====,∴,∴,∴,∴.勾股定理的应用一、填空题1.在Rt△ABC中,∠C=90°,①若a=5,b=12,则c=___________;②若a=8,c=10,则b=___________;③若c=61,b=60,则a=__________;④若a∶b=3∶4,c=10则S△ABC=________。2.如图,某人欲横渡一条河,由于水流的影响,实际上岸地点C偏离欲到达点B200m,结果他在水中实际游了520m,求该河流的宽度为_________3.如图,∠OAB=∠OBC=∠OCD=90°,AB=BC=CD=1,OA=2,则OD2=____________.4.已知直角三角形两直角边的长分别为3cm,4cm,第三边上的高为5.等腰△ABC中,AB=AC=17cm,BC=16cm,则BC边上的高AD=_______。6.在平静的湖面上,有一支红莲,高出水面1米,阵风吹来,红莲被吹到一边,花朵齐及水面,已知红莲移动的水平距离为2米,问这里水深是________m。ABCD7cm7.在ΔABC中,若AB2+BC2=AC2,则∠A+∠ABCD7cm8.如图,直角三角形的两直角边长分别是6cm和8cm,则带阴影的正方形面积是。9.如图,所有的四边形都是正方形,所有的三角形都是直角三角形,其中最大的正方形的边长为7cm,则正方形A,B,C,D的面积之和为___________cm2DBCA10.在一棵树的10米高处有两只猴子,一只猴子爬下树走到离树20米DBCA二.选择题1.已知一个Rt△的两边长分别为3和4,则第三边长的平方是()A、25 B、14 C、7 D、7或252.在直角三角形中,斜边与较小直角边的和、差分别为8、2,则较长直角边长为()A.5B.4C.33.如图,在水塔O的东北方向32m处有一抽水站A,在水塔的东南方向24m处有一建筑工地B,在A45cmB40cmC50cmD4.小丰妈妈买了一部29英寸(74cm)电视机,下列对29英寸的说法中正确的是ABABEFDCB.小丰的妈妈认为指的是屏幕的宽度;C.小丰的爸爸认为指的是屏幕的周长;D.售货员认为指的是屏幕对角线的长度5.已知,如图长方形ABCD中,AB=3cm,AD=9cm,将此长方形折叠,使点B与点D重合,折痕为EF,则△ABE的面积为()A、6cm2 B、8cm2 C、10cm2 D、北南A北南A东A、25海里 B、30海里 C、35海里 D、40海里7.如图,正方形网格中的△ABC,若小方格边长为1,则△ABC是()(A)直角三角形(B)锐角三角形(C)钝角三角形(D)以上答案都不对8.男孩戴维是城里的飞盘冠军,戈里是城里最可恶的踩高跷的人,两人约定一比高低.戴维直立肩高1.5米,他投飞盘很有力,但需在13米内才有威力;戈里踩高跷时鼻子离地6.5米,他的鼻子是他惟一的弱点.戴维需离戈里()远时才能刚好击中对方的鼻子而获胜.A.13米B.12米C.8米D.5米三.解答题1.在某一平地上,有一棵树高8米的大树,一棵树高3米的小树,两树之间相距12米。今一只小鸟在其中一棵树的树梢上,要飞到另一棵树的树梢上,问它飞行的最短距离是多少?(画出草图然后解答)2.如图,A城气象台测得台风中心在A城正西方向320km的B处,以每小时40km的速度向北偏东60°的BF方向移动,距离台风中心A城是否受到这次台风的影响?为什么?若A城受到这次台风影响,那么A城遭受这次台风影响有多长时间?ABCD3.已知,如图,四边形ABCD中,AB=3cm,AD=4cm,BC=13cm,CD=12cm,且∠ABCDADEBC4.如图,铁路上A,B两点相距25km,C,D为两村
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年中国五矿机械市场调查研究报告
- 2025年无针密闭输液接头项目可行性研究报告
- 2025年塑料微孔拖鞋项目可行性研究报告
- 2025至2030年铝片包项目投资价值分析报告
- 2025至2030年蛤蜊浸膏项目投资价值分析报告
- 2025至2030年电脑织领横机电控箱项目投资价值分析报告
- 2025至2030年木制调料罐项目投资价值分析报告
- 2025至2030年中国焊割器数据监测研究报告
- 2025至2030年图像控制产品项目投资价值分析报告
- 中药材购销合同
- 数学-河南省三门峡市2024-2025学年高二上学期1月期末调研考试试题和答案
- 2025年春新人教版数学七年级下册教学课件
- 《心脏血管的解剖》课件
- 心肺复苏课件2024
- 2024-2030年中国并购基金行业发展前景预测及投资策略研究报告
- 河道清淤安全培训课件
- 2024各科普通高中课程标准
- 7.3.1印度(第1课时)七年级地理下册(人教版)
- 教师培训校园安全
- 北师大版语文四年级下册全册教案
- 《湖南师范大学》课件
评论
0/150
提交评论