第三节 垂径定理课件_第1页
第三节 垂径定理课件_第2页
第三节 垂径定理课件_第3页
第三节 垂径定理课件_第4页
第三节 垂径定理课件_第5页
已阅读5页,还剩35页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

垂径定理垂直于弦的直径第三节垂径定理圆的相关概念圆上任意两点间的部分叫做圆弧,简称弧.直径将圆分成两部分,每一部分都叫做半圆(如弧ABC).连接圆上任意两点间的线段叫做弦(如弦AB).●O经过圆心的弦叫做直径(如直径AC).AB⌒以A,B两点为端点的弧.记作,读作“弧AB”.AB⌒小于半圆的弧叫做劣弧,如记作(用两个字母).⌒AmB大于半圆的弧叫做优弧,如记作(用三个字母).ABC⌒mD第三节垂径定理圆是轴对称图形.圆的对称轴是任意一条经过圆心的直线,它有无数条对称轴.●O可利用折叠的方法即可解决上述问题.第三节垂径定理第三节垂径定理赵州石拱桥

1300多年前,我国隋朝建造的赵州石拱桥(如图)的桥拱是圆弧形,它的跨度(弧所对的弦的长)为37.4m,拱高(弧的中点到弦的距离,也叫弓形高)为7.2m,求桥拱的半径(精确到0.1m).第三节垂径定理如图,AB是⊙O的一条弦,做直径CD,使CD⊥AB,垂足为E.(1)圆是轴对称图形吗?如果是,它的对称轴是什么?(2)你能发现图中有那些相等的线段和弧?为什么??思考·OABCDE活动一(1)是轴对称图形.直径CD所在的直线是它的对称轴(2)线段:

AE=BE弧:AC=BC,AD=BD⌒⌒⌒⌒把圆沿着直径CD折叠时,CD两侧的两个半圆重合,点A与点B重合,AE与BE重合,AC,AD分别与BC、BD重合.⌒⌒⌒⌒第三节垂径定理即直径CD垂直于弦AB,平分弦AB,并且平分AB及ACB·OABCDE垂径定理:

垂直于弦的直径平分弦,并且平分弦所对的两条弧.⌒⌒第三节垂径定理垂径定理如图,理由是:连接OA,OB,●OABCDM└则OA=OB.在Rt△OAM和Rt△OBM中,∵OA=OB,OM=OM,∴Rt△OAM≌Rt△OBM.∴AM=BM.∴点A和点B关于CD对称.∵⊙O关于直径CD对称,∴当圆沿着直径CD对折时,点A与点B重合,⌒⌒AC和BC重合,⌒⌒AD和BD重合.⌒⌒∴AC=BC,⌒⌒

AD=BD.第三节垂径定理CAEBO.D总结:CD为⊙O的直径CD⊥AB条件结论⌒⌒⌒⌒AE=BEAC=BCAD=BD第三节垂径定理EOABDCEABCDEOABDCEOABCEOCDAB

练习1OBAED在下列图形,符合垂径定理的条件吗?O第三节垂径定理·ABCDE·OOABDC条件CD为直径结论AC=BC⌒⌒AD=BD⌒⌒CD⊥ABCD⊥ABAE=BE平分弦的直径垂直于弦,并且平分弦所对的两条弧.(不是直径)垂径定理的推论1:CD⊥AB吗?(E)第三节垂径定理②CD⊥AB,垂径定理的逆定理AB是⊙O的一条弦,且AM=BM.你能发现图中有哪些等量关系?与同伴说说你的想法和理由.过点M作直径CD.●O右图是轴对称图形吗?如果是,其对称轴是什么?CD由①CD是直径③AM=BM可推得⌒⌒④AC=BC,⌒⌒⑤AD=BD.●MAB┗平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧.不是直径.第三节垂径定理“知二推三”

(1)垂直于弦

(2)过圆心

(3)平分弦

(4)平分弦所对的优弧

(5)平分弦所对的劣弧注意:当具备了(1)(3)时,应对另一条弦增加”不是直径”的限制.第三节垂径定理E例1如图,已知在⊙O中,弦AB的长为8cm,圆心O到AB的距离为3cm,求⊙O的半径。讲解AB.O垂径定理的应用第三节垂径定理变式:

如图,已知在⊙O中,弦AB的长为8cm,CD是⊙O的直径,CD⊥AB垂足为E,DE=2cm,求⊙O的半径。EAB.OCD第三节垂径定理

8cm1.半径为4cm的⊙O中,弦AB=4cm,

那么圆心O到弦AB的距离是

。2.⊙O的直径为10cm,圆心O到弦AB的距离为3cm,则弦AB的长是

。3.半径为2cm的圆中,过半径中点且垂直于这条半径的弦长是

练习1ABOEABOEOABE第三节垂径定理1.如图,在⊙O中,弦AB的长为8cm,圆心到AB的距离为3cm,则⊙O的半径为.练习2:·ABO∟C5cm342.弓形的弦长AB为24cm,弓形的高CD为8cm,则这弓形所在圆的半径为

.

13cm(1)题(2)题128第三节垂径定理方法归纳:1.垂径定理经常和勾股定理结合使用。2.解决有关弦的问题时,经常(1)连结半径;(2)过圆心作一条与弦垂直的线段等辅助线,为应用垂径定理创造条件。第三节垂径定理例1:赵州桥的主桥拱是圆弧形,它的跨度(弧所对的弦的长)为37.4米,拱高(弧的中点到弦的距离)为7.2米,你能求出赵州桥主桥拱的半径吗?问题?OABDCr第三节垂径定理练习:在⊙O中,AB、AC为互相垂直且相等的两条弦,OD⊥AB于D,OE⊥AC于E.求证:四边形ADOE是正方形.D·OABCE第三节垂径定理

已知:⊙O中弦AB∥CD。求证:AC=BD⌒⌒证明:作直径MN⊥AB。∵AB∥CD,∴MN⊥CD。则AM=BM,CM=DM(垂直平分弦的直径平分弦所对的弦)AM-CM=BM-DM∴AC=BD⌒⌒⌒⌒⌒⌒⌒⌒⌒⌒.MCDABON讲解如果圆的两条弦互相平行,那么这两条弦所夹的弧相等吗?圆的两条平行弦所夹的弧相等第三节垂径定理垂径定理的推论2

如果圆的两条弦互相平行,那么这两条弦所夹的弧相等吗?老师提示:

这两条弦在圆中位置有两种情况:●OABCD1.两条弦在圆心的同侧●OABCD2.两条弦在圆心的两侧垂径定理的推论

圆的两条平行弦所夹的弧相等.MM第三节垂径定理1.在直径为650mm的圆柱形油槽内装入一些油后,截面如图所示.若油面宽AB=600mm,求油的最大深度.ED┌

600CD知识延伸第三节垂径定理2、如图4,在⊙O中,AB为⊙O的弦,C、D是直线AB上两点,且AC=BD求证:△OCD为等腰三角形。E第三节垂径定理3、如图,两个圆都以点O为圆心,小圆的弦CD与大圆的弦AB在同一条直线上。你认为AC与BD的大小有什么关系?为什么?G第三节垂径定理已知P为内一点,且OP=2cm,如果的半径是,则过P点的最长的弦等于

.最短的弦等于_________。⊙o⊙o随堂训练OAPBNM第三节垂径定理已知:⊙O中弦AB∥CD且AB=9cm,CD=12cm,⊙O的直径为15cm,则弦AB,CD间的距离为()A.1.5cmB.10.5cm;C.1.5cm或10.5cmD.都不对;CABCDO第三节垂径定理小结:

解决有关弦的问题,经常是过圆心作弦的垂线,或作垂直于弦的直径,连结半径等辅助线,为应用垂径定理创造条件。.CDABOMNE.ACDBO.ABO第三节垂径定理

常用辅助线:垂直于弦的直径第三节垂径定理请围绕以下两个方面小结本节课:1、从知识上学习了什么?2、从方法上学习了什么?课堂小结圆的轴对称性;垂径定理及其推论(1)垂径定理和勾股定理结合。(2)在圆中解决与弦有关的问题时常作的辅助线

——过圆心作垂直于弦的线段;

——连接半径。第三节垂径定理双基训练

5.如图,将半径为2cm的圆形纸片折叠后,圆弧恰好经过圆心,则折痕AB的长为()A.2cmB.cmC.cmD.cmC6.已知点P是半径为5的⊙O内的一定点,且OP=4,则过P点的所有弦中,弦长可能取的整数值为()A.5,4,3B.10,9,8,7,6,5,4,3C.10,9,8,7,6D.10,9,8COBA第三节垂径定理12.已知直径AB被弦CD分成AE=4,EB=8,CD和AB成300角,则弦CD的弦心距OF=____;CD=_____.1EOABCDF第三节垂径定理在a,d,r,h中,已知其中任意两个量,可以求出其它两个量.⑴d+h=r⑵13.已知:如图,直径CD⊥AB,垂足为E.⑴若半径R=2,AB=,求OE、DE的长.⑵若半径R=2,OE=1,求AB、DE的长.⑶由⑴、⑵两题的启发,你还能编出什么其他问题?第三节垂径定理已知:AB和CD是⊙O内的两条平行弦,,AB=6cm,CD=8cm,⊙O的半径为5cm,思考题:(1)请根据题意画出符合条件的图形(2)求出AB、与CD间的距离。(1)(2)第三节垂径定理试一试P9312挑战自我填一填1、判断:⑴垂直于弦的直线平分这条弦,并且平分弦所对的两条弧.()⑵平分弦所对的一条弧的直径一定平分这条弦所对的另一条弧.()⑶经过弦的中点的直径一定垂直于弦.()⑷圆的两条弦所夹的弧相等,则这两条弦平行.⑸弦的垂直平分线一定平分这条弦所对的弧.()第三节垂径定理3、已知:如图,⊙O中,AB为弦,C为弧AB的中点,OC交AB于D,AB=6cm,CD=1cm.求⊙

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论