版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
青岛版数学八年级下册期末测试题及答案解析(一)一、选择题1.函数y=﹣4x﹣3的图象经过()A.第一、二、三象限 B.第一、二、四象限 C.第二、三、四象限 D.第一、三、四象限2.如图,Rt△ABC沿直角边BC所在直线向右平移到Rt△DEF,则下列结论中,错误的是()A.BE=EC B.BC=EF C.AC=DF D.△ABC≌△DEF3.已知:如图,在矩形ABCD中,E、F、G、H分别为边AB、BC、CD、DA的中点.若AB=2,AD=4,则图中阴影部分的面积为()A.8 B.6 C.4 D.34.下列图形中,绕某个点旋转180°能与自身重合的图形有()(1)正方形;(2)等边三角形;(3)长方形;(4)角;(5)平行四边形;(6)圆.A.2个 B.3个 C.4个 D.5个5.化简:a的结果是()A. B. C.﹣ D.﹣6.已知关于x的不等式组的整数解共有4个,则a的最小值为()A.2 B.2.1 C.3 D.17.已知(﹣5,y1),(﹣3,y2)是一次函数y=x+2图象上的两点,则y1与y2的关系是()A.y1<y2 B.y1=y2 C.y1>y2 D.无法比较8.下列二次根式中,是最简二次根式的是()A. B. C. D.9.下列命题中的真命题是()A.有一组对边平行的四边形是平行四边形 B.有一个角是直角的四边形是矩形 C.对角线互相垂直平分的四边形是正方形 D.有一组邻边相等的平行四边形是菱形10.实数(相邻两个1之间依次多一个0),其中无理数有()A.1个 B.2个 C.3个 D.4个11.如图,在△ABC中,∠ACB=90°,BC的垂直平分线EF交BC于点D,交AB于点E,且BE=BF,添加一个条件,仍不能证明四边形BECF为正方形的是()A.BC=AC B.CF⊥BF C.BD=DF D.AC=BF12.若一个直角三角形的两边长分别为3和4,则它的第三边长为()A.5 B. C.5或4 D.5或二、填空题13.若最简二次根式与是同类二次根式,则a=.14.一次函数y=﹣x﹣3与x轴交点的坐标是.15.如图,将一根25cm长的细木棒放入长、宽、高分别为8cm、6cm和cm的长方体无盖盒子中,则细木棒露在盒外面的最短长度是cm.16.请你写出一个图象过点(1,2),且y随x的增大而减小的一次函数解析式.17.如图,已知面积为1的正方形ABCD的对角线相交于点O,过点O任意作一条直线分别交AD、BC于E、F,则阴影部分的面积是.18.观察图象,可以得出不等式组的解集是.三、解答题19.计算.20.计算:(﹣3)0﹣+|1﹣|+.21.已知x=+2,求x2﹣4x+6的值.22.如图,△ABC是等腰直角三角形,BC是斜边,P为△ABC内一点,将△ABP绕点A逆时针旋转后与△ACP′重合.如果AP=3,那么线段PP′的长是多少?23.已知,在平面直角坐标系中,直线y=2x+3与直线y=﹣2x﹣1交于点C.(1)求两直线与y轴交点A,B的坐标;(2)求点C的坐标;(3)求△ABC的面积.24.如图,在矩形ABCD中,M、N分别是AD、BC的中点,P、Q分别是BM、DN的中点.(1)求证:△MBA≌△NDC;(2)四边形MPNQ是什么样的特殊四边形?请说明理由.25.光华农机租赁公司共有50台联合收割机,其中甲型20台,乙型30台,先将这50台联合收割机派往A、B两地区收割小麦,其中30台派往A地区,20台派往B地区.两地区与该农机租赁公司商定的每天的租赁价格见表:每台甲型收割机的租金每台乙型收割机的租金A地区18001600B地区16001200(1)设派往A地区x台乙型联合收割机,租赁公司这50台联合收割机一天获得的租金为y(元),求y与x间的函数关系式,并写出x的取值范围;(2)若使农机租赁公司这50台联合收割机一天获得的租金总额不低于79600元,说明有多少种分配方案,并将各种方案设计出来;(3)如果要使这50台联合收割机每天获得的租金最高,请你为光华农机租赁公司提一条合理化建议.26.如图,矩形OABC中,O为直角坐标系的原点,A、C两点的坐标分别为(a,0)、(0,b),且(a﹣3)2+=0.(1)求出点A、B、C的坐标;(2)若过点C的直线CD交矩形OABC的边于点D,且把矩形OABC的面积分为1:4两部分,求直线CD的解析式.
参考答案一、选择题1.【解答】解:∵k=﹣4<0,∴函数y=﹣4x﹣3的图象经过第二、四象限,∵b=﹣3<0,∴函数y=﹣4x﹣3的图象与y轴的交点在x轴下方,∴函数y=﹣4x﹣3的图象经过第二、三、四象限.故选:C.2.【解答】解:∵RRt△ABC沿直角边BC所在直线向右平移到Rt△DEF∴Rt△ABC≌Rt△DEF∴BC=EF,AC=DF所以只有选项A是错误的,故选A.3.【解答】解:连接AC,BD,FH,EG,∵E,F,G,H分别为边AB,BC,CD,DA的中点,∴AH=AD,BF=BC,∵四边形ABCD是矩形,∴AD=BC,AD∥BC,∴AH=BF,AH∥BF,∴四边形AHFB是平行四边形,∴FH=AB=2,同理EG=AD=4,∵四边形ABCD是矩形,∴AC=BD,∵E,F,G,H分别为边AB,BC,CD,DA的中点,∴HG∥AC,HG=AC,EF∥AC,EF=AC,EH=BD,∴EH=HG,GH=EF,GH∥EF,∴四边形EFGH是平行四边形,∴平行四边形EFGH是菱形,∴FH⊥EG,∴阴影部分EFGH的面积是×HF×EG=×2×4=4,故选:C.4.【解答】解:(1)正方形是中心对称图形;(2)等边三角形不是中心对称图形;(3)长方形是中心对称图形;(4)角不是中心对称图形;(5)平行四边形是中心对称图形;(6)圆是中心对称图形.所以一共有4个图形是中心对称图形.故选:C.5.【解答】解:由题意可得:a<0,则a=﹣=﹣.故选:C.6.【解答】解:解不等式组得﹣2<x≤a,因为不等式有整数解共有4个,则这四个值是﹣1,0,1,2,所以2≤a<3,则a的最小值是2.故选:A.7.【解答】解:∵﹣5<﹣3,∴y1>y2.故选:C.8.【解答】解:A、被开方数含分母,故A错误;B、被开方数含能开得尽方的因数或因式,故B错误;C、被开方数含能开得尽方的因数或因式,故C错误;D、被开方数不含分母且被开方数不含能开得尽方的因数或因式,故D正确;故选:D.9.【解答】解:A、有两组对边平行的四边形是平行四边形,所以A选项错误;B、有一个角是直角的平行四边形是矩形,所以B选项错误;C、对角线互相垂直平分且相等的四边形是正方形,所以C选项错误;D、有一组邻边相等的平行四边形是菱形,所以D选项正确.故选:D.10.【解答】解:无理数有﹣π,0.1010010001…,共2个,故选:B.11.【解答】解:∵EF垂直平分BC,∴BE=EC,BF=CF,∵BF=BE,∴BE=EC=CF=BF,∴四边形BECF是菱形;当BC=AC时,∵∠ACB=90°,则∠A=45°时,菱形BECF是正方形.∵∠A=45°,∠ACB=90°,∴∠EBC=45°∴∠EBF=2∠EBC=2×45°=90°∴菱形BECF是正方形.故选项A正确,但不符合题意;当CF⊥BF时,利用正方形的判定得出,菱形BECF是正方形,故选项B正确,但不符合题意;当BD=DF时,利用正方形的判定得出,菱形BECF是正方形,故选项C正确,但不符合题意;当AC=BF时,无法得出菱形BECF是正方形,故选项D错误,符合题意.故选:D.12.【解答】解:分为两种情况:①斜边是4有一条直角边是3,由勾股定理得:第三边长是=;②3和4都是直角边,由勾股定理得:第三边长是=5;即第三边长是5或,故选:D.二、填空题13.【解答】解:∵最简二次根式与是同类二次根式,∴4a2+1=6a2﹣1,∴a2=1,解得a=±1.故答案为:±1.14.【解答】解:在y=﹣x﹣3中,令y=0可得﹣x﹣3=0,解得x=﹣3,∴一次函数y=﹣x﹣3与x轴交点的坐标是(﹣3,0),故答案为:(﹣3,0).15.【解答】解:由题意知:盒子底面对角长为=10cm,盒子的对角线长:=20cm,细木棒长25cm,故细木棒露在盒外面的最短长度是:25﹣20=5cm.故答案为:5.16.【解答】解:设一次函数的解析式为y=kx+b,将x=1,y=2代入得:k+b=2,又此一次函数y随x的增大而减小,∴k<0,若k=﹣1,可得出b=3,则一次函数为y=﹣x+3.故答案为:y=﹣x+317.【解答】解:依据已知和正方形的性质及全等三角形的判定可知△AOE≌△COF,则得图中阴影部分的面积为正方形面积的,因为正方形的边长为1,则其面积为1,于是这个图中阴影部分的面积为.故答案为18.【解答】解:由图象知,函数y=3x+1与x轴交于点(,0),即当x>﹣时,函数值y的范围是y>0;因而当y>0时,x的取值范围是x>﹣;函数y=3x+1与x轴交于点(2,0),即当x<2时,函数值y的范围是y>0;因而当y>0时,x的取值范围是x<2;所以,原不等式组的解集是﹣<x<2.故答案是:﹣<x<2.三、解答题19.【解答】解:原式=(10﹣6+4)÷=(10﹣6+4)÷=(40﹣18+8)÷=30÷=15.20.【解答】解:原式=1﹣3+﹣1+﹣=﹣2.21.【解答】解:原式=(x2﹣4x+4)+2=(x﹣2)2+2=(+2﹣2)2+2=2+2=4.22.【解答】解:根据旋转的性质可知将△ABP绕点A逆时针旋转后与△ACP′重合,则△ABP≌△ACP′,所以AP=AP′,∠BAC=∠PAP′=90°,所以在Rt△APP′中,PP′=.23.【解答】解:(1)把x=0,代入y=2x+3,得y=3∴A(0,3)把x=0代入y=﹣2x﹣1,得y=﹣1∴B(0,﹣1)(2)由题意得方程组,解之得,∴C(﹣1,1)(3)由题意得AB=4,点C到AB边的高为1,∴S△ABC=×4×1=2.24.【解答】证明:(1)∵四边形ABCD是矩形,∴AB=CD,AD=BC,∠A=∠C=90°,∵在矩形ABCD中,M、N分别是AD、BC的中点,∴AM=AD,CN=BC,∴AM=CN,在△MAB和△NDC中,∵,∴△MBA≌△NDC(SAS);(2)四边形MPNQ是菱形.理由如下:连接AP,MN,则四边形ABNM是矩形,∵AN和BM互相平分,则A,P,N在同一条直线上,易证:△ABN≌△BAM,∴AN=BM,∵△MAB≌△NDC,∴BM=DN,∵P、Q分别是BM、DN的中点,∴PM=NQ,∵,∴△MQD≌△NPB(SAS).∴四边形MPNQ是平行四边形,∵M是AD中点,Q是DN中点,∴MQ=AN,∴MQ=BM,∵MP=BM,∴MP=MQ,∴平行四边形MQNP是菱形.25.【解答】解:(1)若派往A地区的乙型收割机为x台,则派往A地区的甲型收割机为(30﹣x)台,派往B地区的乙型收割机为(30﹣x)台,派往B地区的甲型收割机为20﹣(30﹣x)=(x﹣10)台.∴y=1600x+1800(30﹣x)+1200(30﹣x)+1600(x﹣10)=200x+74000,x的取值范围是:10≤x≤30,(x是正整数);(2)由题意得200x+74000≥79600,解不等式得x≥28,由于10≤x≤30,x是正整数,∴x取28,29,30这三个值,∴有3种不同的分配方案.①当x=28时,即派往A地区的甲型收割机为2台,乙型收割机为28台;派往B地区的甲型收割机为18台,乙型收割机为2台;②当x=29时,即派往A地区的甲型收割机为1台,乙型收割机为29台;派往B地区的甲型收割机为19台,乙型收割机为1台;③当x=30时,即30台乙型收割机全部派往A地区;20台甲型收割机全部派往B地区;(3)由于一次函数y=200x+74000的值y是随着x的增大而增大的,所以当x=30时,y取得最大值,如果要使农机租赁公司这50台联合收割机每天获得租金最高,只需x=30,此时y=6000+74000=80000.建议农机租赁公司将30台乙型收割机全部派往A地区;20台甲型收割机全部派往B地区,可使公司获得的租金最高.26.【解答】解:(1)由(a﹣3)2+=0.可知(a﹣3)2+|b﹣5|=0,∴a=3b=5,∵矩形OABC中,O为直角坐标系的原点,A、C两点的坐标分别为(a,0)、(0,b),∴A(3,0)B(3,5)C(0,5);(2)S矩形OABC=OA•OC=3×5=15由题意知CD分矩形OABC的两部分面积为3和12①CD与OA交于点DS△ODC=3即•OD•OC=3OD=,即D(,0)C(0,5)y=﹣x+5②CD与AB交于点DS△CBD=3×3×BD=3BD=2即D(3,3)y=﹣x+5.青岛版数学八年级下册期末测试题及答案解析(二)一、选择题1.如图,直线y=kx+b交坐标轴于A(-2,0),B(0,3)两点,则不等式kx+b>0的解集是()A.x>3 B.-2<x<3 C.x<-2 D.x>-22.函数y=ax+b与y=bx+a的图象在同一坐标系内的大致位置正确的是()ABCD3.李老师骑自行车上班,最初以某一速度匀速行进,中途由于自行车发生故障,停下修车耽误了几分钟,为了按时到校,李老师加快了速度,仍保持匀速行进,能准时到校.在课堂上,李老师请学生画出他行进的路程y(千米)与行进时间t(小时)的函数图象的示意图,同学们画出的图象如图所示,你认为正确的是()4.若函数y=kx+b的图象如图所示,那么当y>1时,x的取值范围是:()A、x>0B、x>2 C、x<0 D、x<25.一次函数y=ax+1与y=bx-2的图象交于x轴上一点,那么a:b等于()A. B.C. D.以上答案都不对6.当直线y=x+2上的点在直线y=3x-2上相应点的上方时,则()A.x<0 B.x<2C.x>0 D.x>27、下列现象是数学中的平移的是()A、冰化成水B、电梯由一楼升到二楼C、导弹击中目标后爆炸D、卫星绕地球运动8、下列运动是属于旋转的是()A、滾动过程中篮球的滚动B、钟表的钟摆的摆动C、气球升空的运动D、一个图形沿某直线对折过程9、P是正△ABC内的一点,将△PBC逆时针方向旋转到△P1BA,则∠PBP1的度数是()A.45°B.60°C.90°D.120°10、下列说法正确的是()A.若△ABC≌△DEF,则△ABC可以看作是由△DEF平移得到的B.若∠A=∠B,则∠A可以看作是由∠B平移得到的C.若∠A经过平移后为∠A′,则∠A=∠A′D.若线段a∥b,则线段a可以看作由线段b平移得到的11、下列图形中,是由(1)仅通过平移得到的是()12、在如图所示的单位正方形网格中,△ABC经过平移后得到△A1B1C1,已知在AC上一点P(2.4,2)平移后的对应点为P1,点P1绕点O逆时针旋转180°,得到对应点P2,则P2点的坐标为()A.(1.4,-1) B.(1.5,2) C.(1.6,1) D.(2.4,1)二、填空题13.已知函数y=(m+2)x+4-m2是正比例函数,则m=________,该函数的解析式为_________.14.两直线y=x-1与y=-x+2的交点在第_________象限15.若一次函数y=kx+b交于y轴的负半轴,且y的值随x的增大而减少,则k____0,b______0.(填“>”、“<”或“=”)16.如图所示,在矩形ABCD中,动点P从点B出发,沿BC,CD,DA运动至点A停止,设点P运动的路程为,△ABP的面积为,如果关于的函数图象如图所示,那么△ABC的面积是.17、△ABC和△DCE是等边三角形,则在此图中,△ACE绕着点旋转度可得到△。AACDEB18、、如图,将矩形ABCD绕点A顺时针旋转到矩形A’B’C’D’的位置,旋转角为(0<<90)。若1=110,则=。AABCDB’1C’D’19、如图,在等边△ABC中,AB=6,D是BC的中点,将△ABD绕点A旋转后得到△ACE,那么线段DE的长度为.20、如图,把“QQ”笑脸放在直角坐标系中,已知左眼A的坐标是(-2,3),嘴唇C点的坐标为(-1,1),则将此“QQ”笑脸向右平移3个单位后,右眼B的坐标是。三、解答题.....ABCEF.....ABCEF22.已知一次函数经过点(1,-2)和点(-1,3),求这个一次函数的解析式,并求:(1)当时,的值;(2)x为何值时,?(3)当时,的值范围;(4)当时,的值范围.23.农民带了若干千克自产的土豆进城出售,为了方便,他带了一些零钱备用,按市场价售出一些后,又降价出售.售出土豆千克数与他手中持有的钱数(含备用零钱)的关系如图所示,结合图象回答下列问题:
(1)农民自带的零钱是多少?
(2)降价前他每千克土豆出售的价格是多少?
(3)降价后他按每千克0.4元将剩余土豆售完,这时他手中的钱(含备用零钱)是26元,问他一共带了多少千克土豆?
24.小明受《乌鸦喝水》故事的启发,利用量筒和体积相同的小球进行了如下操作:请根据图中给出的信息,解答下列问题:(1)放入一个小球量筒中水面升高_______cm;(2)求放入小球后量筒中水面的高度y(cm)与小球个数x(个)之间的一次函数关系式(不要求写出自变量的取值范围);(3)量筒中至少放入几个小球时有水溢出?25、如图,的∠BAC=120º,以BC为边向形外作等边,把绕着D点按顺时针方向旋转60º后到的位置。若,求∠BAD的度数和AD的长.26、如图,P是等边△ABC内的一点,且PA=6,PB=8,PC=10,若将△PAC绕点A逆时针旋转后,得到△P′AB。求:(1)PP′的长;(2)∠APB的度数.27、如图1所示,将一个边长为2的正方形SKIPIF1<0和一个长为2、宽为1的长方形拼在一起,构成一个大的长方形SKIPIF1<0.现将小长方形SKIPIF1<0绕点SKIPIF1<0顺时针旋转至,旋转角为SKIPIF1<0.(1)当点SKIPIF1<0恰好落在SKIPIF1<0边上时,求旋转角的值;(2)如图2,SKIPIF1<0为SKIPIF1<0的中点,且0°<SKIPIF1<0<90°,求证:;(3)小长方形SKIPIF1<0绕点SKIPIF1<0顺时针旋转一周的过程中,SKIPIF1<0与能否全等?若能,直接写出旋转角SKIPIF1<0的值;若不能,说明理由.答案解析选择题:DCCCBBBBBCCD二、填空题:13、m=-2,y=-4x14、一15、<,<16、1017、C,逆时针,60,BCD18、2019、3√320、(3,3)三、解答题:21、略22、y=-5/2x+1/2(1)y=4.5(2)x>1/5(3)-2≦y≦11/2(4)-1/5<x<1.23、(1)5元(2)0.5元/千克(3)40千克24、(1)2cm(2)y=2x+30(3)10个25、∠BAD=60°,AD=526、(1)PP′=PA=6,(2)∠APB=∠BP′P+∠APP′=90°+60°=150°27、(1)=30°(2)证△SKIPIF1<0CG≌△DCSKIPIF1<0E′(3)SKIPIF1<0与能全等,=135°或=315°青岛版数学八年级下册期末测试题及答案解析(三)一、选择题1.有下列说法:(1)无理数就是开方开不尽的数;(2)无理数是无限不循环小数;(3)无理数包括正无理数、零、负无理数;(4)无理数都可以用数轴上的点来表示.其中正确的说法的个数是()A.1 B.2 C.3 D.42.下列各组数中,能构成直角三角形的一组是()A.6,8,12 B.1,4, C.3,4,5 D.2,2,3.若顺次连接四边形ABCD各边的中点所得四边形是矩形,则四边形ABCD一定是()A.矩形 B.菱形 C.对角线互相垂直的四边形 D.对角线相等的四边形4.()2的平方根是x,64的立方根是y,则x+y的值为()A.3 B.7 C.3或7 D.1或75.若不等式的解集是x>a,则a的取值范围是()A.a<3 B.a=3 C.a>3 D.a≥36.不等式组的解集在数轴上表示正确的是()A. B. C. D.7.已知点P(2﹣4m,m﹣4)在第三象限,且满足横、纵坐标均为整数的点P有()A.1个 B.2个 C.3个 D.4个8.如图所示,四边形OABC是正方形,边长为4,点A、C分别在x轴、y轴的正半轴上,点P在OA上,且P点的坐标为(3,0),Q是OB上一动点,则PQ+AQ的最小值为()A.5 B. C.4 D.6二、填空题9.计算:+(π﹣2)0﹣()﹣1=.10.的算术平方根等于.11.一个正数x的平方根为2a﹣3和5﹣a,则x=.12.如果关于x的不等式(a+1)x>a+1的解集为x<1,那么a的取值范围是.13.如图,在菱形ABCD中,M、N分别是边BC、CD上的点,且AM=AN=MN=AB,则∠C的度数为.14.如图,是一株美丽的勾股树,其中所有的四边形都是正方形,所有的三角形都是直角三角形.若正方形A、B、C、D的边长分别是3、5、2、3,则最大正方形E的面积是.三、解答题15.解不等式(或不等式组)并在数轴上表示解集:(1)2(x+5)<3(x﹣5)(2)解不等式组.16.求x的值:(1)(x+3)3=﹣27(2)16(x﹣1)2﹣25=0.17.如果A=是a+3b的算术平方根,B=的1﹣a2的立方根.试求:A﹣B的平方根.18.如图,在高为3米,斜坡长为5米的楼梯表面铺地毯,则地毯的长度至少需要多少米?若楼梯宽2米,地毯每平方米30元,那么这块地毯需花多少元?19.已知关于x、y的方程组的解都是非正数,求a的取值范围.20.自学下面材料后,解答问题.分母中含有未知数的不等式叫分式不等式.如:<0等.那么如何求出它们的解集呢?根据我们学过的有理数除法法则可知:两数相除,同号得正,异号得负.其字母表达式为:(1)若a>0,b>0,则>0;若a<0,b<0,则>0;(2)若a>0,b<0,则<0;若a<0,b>0,则<0.反之:(1)若>0,则或(2)若<0,则或.根据上述规律,求不等式>0的解集.21.如图,四边形ABCD是矩形,∠EDC=∠CAB,∠DEC=90°.(1)求证:AC∥DE;(2)过点B作BF⊥AC于点F,连接EF,试判别四边形BCEF的形状,并说明理由.22.为建设“秀美幸福之市”,长沙市绿化提质改造工程正如火如荼地进行,某施工队计划购买甲、乙两种树苗共400棵对芙蓉路的某标段道路进行绿化改造,已知甲种树苗每棵200元,乙种树苗每棵300元.(1)若购买两种树苗的总金额为90000元,求需购买甲、乙两种树苗各多少棵?(2)若购买甲种树苗的金额不少于购买乙种树苗的金额,至少应购买甲种树苗多少棵?23.如图,在△ABC中,AD是BC边上的中线,E是AD的中点,过点A作BC的平行线交BE的延长线于点F,连接CF.(1)求证:AF=DC;(2)若AB⊥AC,试判断四边形ADCF的形状,并证明你的结论.24.如图,在平行四边形ABCD中,对角线AC,BD相交于点O,若E,F是AC上两动点,分别从A,C两点以相同的速度向C、A运动,其速度为1cm/s.(1)当E与F不重合时,四边形DEBF是平行四边形吗?说明理由;(2)若BD=12cm,AC=16cm,当运动时间t为何值时,以D、E、B、F为顶点的四边形是矩形?
参考答案一、选择题1.【解答】解:(1)π是无理数,而不是开方开不尽的数,则命题错误;(2)无理数就是无限不循环小数,则命题正确;(3)0是有理数,不是无理数,则命题错误;(4)正确;故选:B.2.【解答】解:A、∵82+62≠122,∴不能够成直角三角形,故本选项错误;B、∵12+()2≠42,∴不能够成直角三角形,故本选项错误;C、∵32+42=52,∴能够成直角三角形,故本选项正确;D、∵22+22≠()2,∴不能够成直角三角形,故本选项错误.故选:C.3.【解答】解:已知:如右图,四边形EFGH是矩形,且E、F、G、H分别是AB、BC、CD、AD的中点,求证:四边形ABCD是对角线垂直的四边形.证明:由于E、F、G、H分别是AB、BC、CD、AD的中点,根据三角形中位线定理得:EH∥FG∥BD,EF∥AC∥HG;∵四边形EFGH是矩形,即EF⊥FG,∴AC⊥BD,故选:C.4.【解答】解:∵(﹣)2=9,∴()2的平方根是±3,即x=±3,∵64的立方根是y,∴y=4,当x=3时,x+y=7,当x=﹣3时,x+y=1.故选:D.5.【解答】解:由不等式的解集是x>a,根据大大取大,a≥3.选:D.6.【解答】解:,由①得,x≤﹣1,由②得,x>﹣5,故﹣5<x≤﹣1.在数轴上表示为:.故选:A.7.【解答】解:∵点P(2﹣4m,m﹣4)在第三象限,∴,由①得,m>,由②得,m<4,所以,不等式组的解集是<m<4,∴整数m为1、2、3,∴满足横、纵坐标均为整数的点P有3个.故选:C.8.【解答】解:作出P关于OB的对称点D,则D的坐标是(0,3),则PQ+QA的最小值就是AD的长,则OD=3,因而AD==5,则PD+PA和的最小值是5,故选:A.二、填空题9.【解答】解:原式=2+1﹣=3﹣2=1.故答案为:1.10.【解答】解:的算术平方根=,故答案为:11.【解答】解:∵一个正数x的平方根为2a﹣3和5﹣a,∴(2a﹣3)+(5﹣a)=0,解得:a=﹣2.∴2a﹣3=﹣7,5﹣a=7,∴x=(±7)2=49.故答案为:49.12.【解答】解:∵(a+1)x>a+1的解集为x<1,∴a+1<0,∴a<﹣1.13.【解答】解:∵四边形ABCD是菱形,∴AB=AD,∵AM=AN=MN=AB,∴AB=AM,AN=AD,△AMN是等边三角形,∴∠B=∠AMB,∠D=∠AND,∠MAN=60°,设∠B=x,则∠AMB=x,∠BAM=∠DAN=180°﹣2x,∵∠B+∠BAD=180°,∴x+180°﹣2x+60°+180°﹣2x=180°,解得:x=80°,∴∠B=80°,∴∠C=180°﹣80°=100°.故答案为:100°.14.【解答】解:设中间两个正方形的边长分别为x、y,最大正方形E的边长为z,则由勾股定理得:x2=32+52=34;y2=22+32=13;z2=x2+y2=47;即最大正方形E的边长为:,所以面积为:z2=47.故答案为:47.三、解答题15.【解答】解:(1)由原不等式,得2x+10<3x﹣15,即10+15<3x﹣2x∴x>25;(2)由不等式组得,解得16.【解答】解:(1)x+3=﹣3,所以x=﹣6;(2)(x﹣1)2=,x﹣1=±,所以x=或x=﹣.17.【解答】解:依题意有,解得,A==3,B==﹣2A﹣B=3+2=5,故A﹣B的平方根是±.18.【解答】解:在RT△ABC中,AC==4米,故可得地毯长度=AC+BC=7米,∵楼梯宽2米,∴地毯的面积=14平方米,故这块地毯需花14×30=420元.答:地毯的长度需要7米,需要花费420元.19.【解答】解:,①+②得:x=﹣3+a,①﹣②得:y=﹣4﹣2a,所以方程组的解为:,因为关于x、y的方程组的解都是非正数,所以可得:,解得:﹣2≤a≤3.20.【解答】解:(2)若<0,则或;故答案为:或;由上述规律可知,不等式转化为或,所以,x>2或x<﹣1.21.【解答】(1)证明:∵四边形ABCD是矩形,∴AB∥CD,∴∠ACD=∠CAB,∵∠EDC=∠CAB,∴∠EDC=∠ACD,∴AC∥DE;(2)解:四边形BCEF是平行四边形.理由如下:∵BF⊥AC,四边形ABCD是矩形,∴∠DEC=∠AFB=90°,DC=AB在△CDE和△BAF中,,∴△CDE≌△BAF(AAS),∴CE=BF,DE=AF(全等三角形的对应边相等),∵AC∥DE,即DE=AF,DE∥AF,∴四边形ADEF是平行四边形,∴AD=EF,∵AD=BC,∴EF=BC,∵CE=BF,∴四边形BCEF是平行四边形(两组对边分别相等的四边形是平行四边形).22.【解答】解:(1)设购买甲种树苗x棵,则购买乙种树苗(400﹣x)棵,由题意,得200x+300(400﹣x)=90000,解得:x=300,∴购买乙种树苗400﹣300=100棵,答:购买甲种树苗300棵,则购买乙种树苗100棵;(2)设应购买甲种树苗a棵,则购买乙种树苗(400﹣a)棵,由题意,得200a≥300(400﹣a),解得:a≥240.答:至少应购买甲种树苗240棵.23.【解答】(1)证明:∵AF∥BC,∴∠AFE=∠DBE,∵E是AD的中点,AD是BC边上的中线,∴AE=DE,BD=CD,在△AFE和△DBE中∴△AFE≌△DBE(AAS),∴AF=BD,∴AF=DC.(2)四边形ADCF是菱形,证明:AF∥BC,AF=DC,∴四边形ADCF是平行四边形,∵AC⊥AB,AD是斜边BC的中线,∴AD=BC=DC,∴平行四边形ADCF是菱形.24.【解答】解:(1)当E与F不重合时,四边形DEBF是平行四边形理由:∵四边形ABCD是平行四边形,∴OA=OC,OB=OD;∵E、F两动点,分别从A、C两点以相同的速度向C、A运动,∴AE=CF;∴OE=OF;∴BD、EF互相平分;∴四边形DEBF是平行四边形;(2)∵四边形DEBF是平行四边形,∴当BD=EF时,四边形DEBF是矩形;∵BD=12cm,∴EF=12cm;∴OE=OF=6cm;∵AC=16cm;∴OA=OC=8cm;∴AE=2cm或AE=14cm;由于动点的速度都是1cm/s,所以t=2(s)或t=14(s);故当运动时间t=2s或14s时,以D、E、B、F为顶点的四边形是矩形.青岛版数学八年级下册期末测试题及答案解析(四)一、选择题1.已知▱ABCD的周长为32,AB=4,则BC等于(
)A.
4
B.
12
C.
24
D.
282.已知四边形ABCD是平行四边形,再从①AB=BC,②∠ABC=90°,③AC=BD,④AC⊥BD四个条件中,选两个作为补充条件后,使得四边形ABCD是正方形,现有下列四种选法,其中错误的是()A.
选①②
B.
选①③
C.
选②④
D.
选②③3.下列条件中,不能判定四边形是平行四边形的是(
)A.
两组对边分别平行
B.
一组对边平行,另一组对边相等
C.
两组对边分别相等
D.
一组对边平行且相等4.如图所示,在平行四边形ABCD中,∠ABE=∠AEB,AE∥DF,DC是∠ADF的角平分线.下列说法正确的是()
①BE=CF②AE是∠DAB的角平分线③∠DAE+∠DCF=120°.
A.
①
B.
①②
C.
①②③
D.
都不正确5.如图,D、E、F分别为Rt△ABC中AB、AC、BC的中点,AB=2,则DC和EF的大小关系是()
A.
DC>EF
B.
DC<EF
C.
DC=EF
D.
无法比较6.如图,在梯形ABCD中,∠ABC=90º,AE∥CD交BC于E,O是AC的中点,AB=,AD=2,BC=3,下列结论:
①∠CAE=30º;②AC=2AB;③S△ADC=2S△ABE;④BO⊥CD,其中正确的是()
A.
①②③
B.
②③④
C.
①③④
D.
①②③④7.下列说法中,不正确的是().A3是的算术平方根B±3是的平方根C-3是的算术平方根D.-3是的立方根8.在-1.414,,π,3.14,2+,3.212212221…,这些数中,无理数的个数为().A.5B.2C.3D.49.已知下列结论:①在数轴上的点只能表示无理数;②任何一个无理数都能用数轴上的点表示;③实数与数轴上的点一一对应;④有理数有无限个,无理数有有限个.其中正确的结论是().A.①②B.②③C.③④D.②③④10.若,,则()A.8B.±8C.±2D.±8或±211.已知一个直角三角形的两边长分别为3和4,则第三边长是()A.5 B.25 C. D.5或12.若a、b为实数,且满足│a-2│+=0,则b-a的值为()A.2 B.0 C.-2 D.以上都不对二、填空题13.矩形ABCD的对角线AC、BD相交于点O,∠AOD=120°,AC+BD=16,则该矩形的面积为________14.如图,剪两张等宽对边平行的纸条,随意交叉叠放在一起,转动其中的一张,重合的部分构成了一个四边形,这个四边形是________.
15.如图,▱ABCD的对角线交于点O,且AB=5,△OCD的周长为13,则▱ABCD的两条对角线长度之和为________.16.如图,▱ABCD中,∠A=50°AD⊥BD,沿直线DE将△ADE翻折,使点A落
在点A′处,AE交BD于F,则∠DEF=________
17.等腰三角形的腰长为5,底边长为8,则它底边上的高为_____,面积为____.18.如图,小莹用一张长方形纸片ABCD进行折纸,已知该纸片宽AB为8cm,长BC为10cm.当小莹折叠时,顶点D落在BC边上的点F处(折痕为AE).则此时EC=19.有一长、宽、高分别为5cm、4cm、3cm的木箱,在它里面放入一根细木条(木条的粗细、形变忽略不计),要求木条不能露出木箱,请你算一算,能放入的细木条的最大长度是_________cm.20.如图7,已知在中,,,分别以,为直径作半圆,面积分别记为,,则+的值等于.三、解答题22.求x值(每题4分,共8分)(1)
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 工会福利招标后合同书
- 《多发伤的救治》课件
- 2025年福州货运从业资格考试题目和答案大全
- 2025年常州货运资格证500道题库
- 《复习免疫调节》课件
- 酒店业应收款项回收策略
- 独立办公室租赁合同
- 商业中心卷帘门施工合同
- 酒店客户信息移交办法
- 酿酒厂食堂外包服务评估
- 儒家《十三经》剖析课件
- 关于产教融合与校企合作的相关政策
- 《脚手架规范》JGJ130-2011(新)课件
- 《唐代诗歌李贺》课件
- 高速公路服务区环境管理整顿
- 《物联网系统安装与调试》期末复习试题
- Unit4UnderstandingIdeasClickforafriend教学设计-2023-2024学年高中英语
- GB/T 43417-2023儿童青少年脊柱侧弯矫形器的配置
- 品管圈QCC成果汇报提高瞳孔测量准确率(近距瞳孔测量指引)
- 公司投标书密封条模板
- 幼儿园小中大班健康、社会:《防拐防骗我知道》 课件
评论
0/150
提交评论