内蒙古呼和浩特市重点名校2024届高二上数学期末联考模拟试题含解析_第1页
内蒙古呼和浩特市重点名校2024届高二上数学期末联考模拟试题含解析_第2页
内蒙古呼和浩特市重点名校2024届高二上数学期末联考模拟试题含解析_第3页
内蒙古呼和浩特市重点名校2024届高二上数学期末联考模拟试题含解析_第4页
内蒙古呼和浩特市重点名校2024届高二上数学期末联考模拟试题含解析_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

内蒙古呼和浩特市重点名校2024届高二上数学期末联考模拟试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知两条不同直线和平面,下列判断正确的是()A.若则 B.若则C.若则 D.若则2.已知函数的导函数满足,则()A. B.C.3 D.43.如图所示,为了测量A,B处岛屿的距离,小张在D处观测,测得A,B分别在D处的北偏西、北偏东方向,再往正东方向行驶10海里至C处,观测B在C处的正北方向,A在C处的北偏西方向,则A,B两处岛屿间的距离为()海里.A. B.C. D.104.命题“∃x0∈(0,+∞),”的否定是()A.∀x∈(﹣∞,0),2x+sinx≥0B.∀x∈(0,+∞),2x+sinx≥0C.∃x0∈(0,+∞),D.∃x0∈(﹣∞,0),5.函数的图象的大致形状是()A. B.C. D.6.下列椭圆中,焦点坐标是的是()A. B.C. D.7.在正三棱锥S−ABC中,M、N分别是棱SC、BC的中点,且,若侧棱,则正三棱锥S−ABC外接球的表面积是()A. B.C. D.8.在等差数列中,,且,,,构成等比数列,则公差()A.0或2 B.2C.0 D.0或9.已知直线:与双曲线的两条渐近线分别相交于A、B两点,若C为直线与y轴的交点,且,则k等于()A.4 B.6C. D.10.散点图上有5组数据:据收集到的数据可知,由最小二乘法求得回归直线方程为,则的值为()A.54.2 B.87.64C.271 D.438.211.如图,面积为的正方形中有一个不规则的图形,可按下面方法估计的面积:在正方形中随机投掷个点,若个点中有个点落入中,则的面积的估计值为,假设正方形的边长为,的面积为,并向正方形中随机投掷个点,用以上方法估计的面积时,的面积的估计值与实际值之差在区间内的概率为附表:A. B.C. D.12.有甲、乙两个抽奖箱,甲箱中有3张无奖票3张有奖票,乙箱中有4张无奖票2张有奖票,某人先从甲箱中抽出一张放进乙箱,再从乙箱中任意抽出一张,则最后抽到有奖票的概率是()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.若点O和点F分别为椭圆+=1的中心和左焦点,点P为椭圆上的任意一点,则·的最大值为________.14.直线的倾斜角为______15.在长方体中,设,,则异面直线与所成角的大小为______16.若函数在[1,3]单调递增,则a的取值范围___三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知点F是抛物线和椭圆的公共焦点,是与的交点,.(1)求椭圆的方程;(2)直线与抛物线相切于点,与椭圆交于,,点关于轴的对称点为.求的最大值及相应的.18.(12分)已知函数的图象在点处的切线与直线平行(是自然对数的底数).(1)求的值;(2)若在上恒成立,求实数的取值范围.19.(12分)已知椭圆的下焦点为、上焦点为,其离心率.过焦点且与x轴不垂直的直线l交椭圆于A、B两点(1)求实数m的值;(2)求△ABO(O为原点)面积的最大值20.(12分)两人下棋,每局均无和棋且获胜的概率为,某一天这两个人要进行一场五局三胜的比赛,胜者赢得2700元奖金,(1)分别求以获胜、以获胜的概率;(2)若前两局双方战成,后因为其他要事而终止比赛,间,怎么分奖金才公平?21.(12分)如图,在三棱锥中,平面平面,且,(1)求证:;(2)求直线与所成角的余弦值22.(10分)在数列中,,且,(1)求的通项公式;(2)求的前n项和的最大值

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】根据线线、线面、面面的平行与垂直的位置关系即可判断.【详解】解:对于选项A:若,则与可能平行,可能相交,可能异面,故选项A错误;对于选项B:若,则,故选项B错误;对于选项C:当时不满足,故选项C错误;综上,可知选项D正确.故选:D.2、C【解析】先对函数求导,再由,可求出的关系式,然后求【详解】由,得,因为,所以,所以,故选:C3、C【解析】分别在和中,求得的长度,再在中,利用余弦定理,即可求解.【详解】如图所示,可得,所以,在中,可得,在直角中,因为,所以,在中,由余弦定理可得,所以.故选:C.4、B【解析】利用特称命题的否定是全称命题,写出结果即可【详解】命题“∃x0∈(0,+∞),”的否定是“∀x∈(0,+∞),2x+sinx≥0”故选:B5、B【解析】对A,根据当时,的值即可判断;对B,根据函数在上的单调性即可判断;对C,根据函数的奇偶性即可判断;对D,根据函数在上的单调性即可判断.【详解】解:对A,当时,,故A错误;对B,的定义域为,且,故为奇函数;,当时,当时,,即,又,,故存在,故在单调递增,单调递减,单调递增,故B正确;对C,为奇函数,故C错误;对D,函数在上不单调,故D错误.故选:B.6、B【解析】根据给定条件逐一分析各选项中的椭圆焦点即可判断作答.【详解】对于A,椭圆的焦点在x轴上,A不是;对于B,椭圆,即,焦点在y轴上,半焦距,其焦点为,B是;对于C,椭圆,即,焦点在y轴上,半焦距,其焦点为,C不是;对于D,椭圆,即,焦点在y轴上,半焦距,其焦点为,D不是.故选:B7、A【解析】由题意推出平面,即平面,,将此三棱锥补成正方体,则它们有相同的外接球,正方体的对角线就是球的直径,求出直径即可求出球的体积【详解】∵,分别为棱,的中点,∴,∵三棱锥为正棱锥,作平面,所以是底面正三角的中心,连接并延长交与点,∵底面是正三角形,,平面∴,,∵,平面,平面,∴平面,∵平面,∴,∴,又∵,而,且,平面,∴平面,∴平面,∴,因为S−ABC是正三棱锥。所以,以,,为从同一定点出发的正方体三条棱,将此三棱锥补成以正方体,则它们有相同的外接球,正方体的体对角线就是球的直径,,所以.故选:A.8、A【解析】根据等比中项的性质和等差数列的通项公式建立方程,可解得公差d得选项.【详解】解:因为在等差数列中,,且,,,构成等比数列,所以,即,所以,解得或,故选:A.9、D【解析】先求出双曲线的渐近线方程,然后分别与直线联立,求出A、B两点的横坐标,再利用可求解.【详解】由双曲线方程可知其渐近线方程为:,当时,与联立,得,同理得,由,且可知,所以有,解得.故选:D10、C【解析】通过样本中心点来求得正确答案.【详解】,故,则,故.故选:C11、D【解析】每个点落入中的概率为,设落入中的点的数目为,题意所求概率为故选D12、B【解析】先分为在甲箱中抽出一张有奖票放入乙箱和在甲箱中抽出一张无奖票放入乙箱,进而结合条件概率求概率的方法求得答案.【详解】记表示在甲箱中抽出一张有奖票放进乙箱,表示在甲箱中抽出一张无奖票放进乙箱,A表示最后抽到有奖票.所以,,于是.故选:B.二、填空题:本题共4小题,每小题5分,共20分。13、6【解析】由椭圆方程得到F,O的坐标,设P(x,y)(-2≤x≤2),利用数量积的坐标运算将·转化为二次函数最值求解.【详解】由椭圆+=1,可得F(-1,0),点O(0,0),设P(x,y)(-2≤x≤2),则·=x2+x+y2=x2+x+3=x2+x+3=(x+2)2+2,-2≤x≤2,当x=2时,·取得最大值6.故答案为:6【点睛】本题主要考查平面向量的数量积及应用以及椭圆的几何性质和二次函数求最值,还考查了运算求解的能力,属于中档题.14、【解析】把直线方程化为斜截式,再利用斜率与倾斜角的关系即可得出【详解】设直线的倾斜角为由直线化为,故,又,故,故答案为【点睛】一般地,如果直线方程的一般式为,那么直线的斜率为,且,其中为直线的倾斜角,注意它的范围是15、##【解析】建立空间直角坐标系,用向量法即可求出异面直线与所成的角.【详解】以为原点,所在直线分别为轴,轴,轴,建立空间直角坐标系,则,所以,因为,所以,即,所以异面直线与所成的角为.故答案为:90°.16、【解析】由在区间上恒成立来求得的取值范围.【详解】依题意在区间上恒成立,在上恒成立,所以.故答案为:三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2),.【解析】(1)根据题意可得,然后根据,,计算可得,最后可得结果.(2)假设直线的方程为,根据与抛物线相切,可得,然后与椭圆联立,计算,然后计算点到的距离,计算,利用函数性质可得结果.【详解】(1)由题意知:,.,得:,所以.所以的方程为.(2)设直线的方程为,则由,得得:所以直线的方程为.由,得得.又,所以点到的距离为..令,则,.此时,即【点睛】本题考查直线与圆锥曲线的综合以及三角形面积问题,本题着重考查对问题分析能力以及计算能力,属难题.18、(1)(2)【解析】(1)求出函数的导函数,根据题意结合导数的几何意义列出方程,解之即可得解;(2)在上恒成立,即在上恒成立,从而,令,利用导数求出函数的最小值,即可求得实数的取值范围【小问1详解】解:,因为函数的图象在点处的切线与直线平行,所以,解得;【小问2详解】解:在上恒成立,即在上恒成立,,,令,则,当时,;当时,,函数在上单调递减,有上单调递增,,,即实数的取值范围是19、(1)2;(2)﹒【解析】(1)根据已知条件得,,结合离心率,即可解得答案(2)设直线的方程,与椭圆方程联立,利用弦长公式以及三角形的面积公式,基本不等式即可得出答案【小问1详解】由题意可得,,,∵离心率,∴,∵,∴,解得【小问2详解】由(1)知,椭圆,上焦点,设,,,,直线的方程为:,联立,得,∴,,∴,∴,∴,当且仅当,即时等号成立,∴为原点)面积的最大值为20、(1)以获胜、以获胜的概率分别是;(2)分给分别元,元.【解析】(1)以获胜、以获胜,则分别要连胜三局,前三局胜两局输一局,第四局胜利;(2)求出若两局之后正常结束比赛时,的胜率,按照胜率分奖金.【小问1详解】设以获胜、以获胜的事件分别为,依题意要想获胜,必须从第一局开始连胜局,;要想获胜,则前局只能胜局,且第局胜利,故概率;【小问2详解】设前两局双方战成后胜,胜的事件分别为.若胜,则可能连胜局,或者局只胜场,第局胜,故概率;由于两人比赛没有和局,获胜的概率为,则获胜的概率为,若胜,则可能连胜局,或者局只胜场,第局胜,故概率.故奖金应分给元,分给元.21、(1)证明见解析;(2).【解析】(1)过点作交的延长线于点,连接,由,,证出平面,即可证出.(2)以为原点,的方向分别为轴正方向,建立空间直角坐标系,写出相应点的坐标,利用,即可得到答案.【小问1详解】过点作交的延长线于点,连接,因为,所以,又因为,所以,所以,即,.因为,所以平面,因为平面,所以【

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论