版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
内蒙古呼和浩特市第六中学2024届高二数学第一学期期末学业水平测试试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.下列说法错误的是()A.“若,则”的逆否命题是“若,则”B.“”的否定是”C.“是"”的必要不充分条件D.“或是"”的充要条件2.下列命题中,真命题的个数为()(1)是为双曲线的充要条件;(2)若,则;(3)若,,则;(4)椭圆上的点距点最近的距离为;A.个 B.个C.个 D.个3.已知,则()A. B.C. D.4.彬塔,又称开元寺塔、彬县塔,民间称“雷峰塔”,位于陕西省彬县城内西南紫薇山下.某同学为测量彬塔的高度,选取了与塔底在同一水平面内的两个测量基点与,现测得,,,在点测得塔顶的仰角为60°,则塔高()A.30m B.C. D.5.曲线在处的切线如图所示,则()A. B.C. D.6.设实数x,y满足约束条件则的最小值()A.5 B.C. D.87.命题任意圆的内接四边形是矩形,则为()A.每一个圆的内接四边形是矩形B.有的圆的内接四边形不是矩形C.所有圆的内接四边形不是矩形D.存在一个圆的内接四边形是矩形8.函数直线与的图象相交于A、B两点,则的最小值为()A.3 B.C. D.9.设为实数,则曲线:不可能是()A.抛物线 B.双曲线C.圆 D.椭圆10.已知圆与抛物线的准线相切,则实数p的值为()A.2 B.6C.3或8 D.2或611.在空间直角坐标系中,已知点,,则线段的中点坐标与向量的模长分别是()A.;5 B.;C.; D.;12.如图,已知四棱锥,底面ABCD是边长为4的菱形,且,E为AD的中点,,则异面直线PC与BE所成角的余弦值为()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.平行六面体中,底面是边长为1的正方形,,则对角线的长度为___.14.设函数(1)求的最小正周期和的最大值;(2)已知锐角的内角A,B,C对应的边分别为a,b,c,若,且,求的面积.15.已知函数有三个零点,则实数的取值范围为___________.16.已知双曲线M的中心在原点,以坐标轴为对称轴.从以下三个条件中任选两个条件,并根据所选条件求双曲线M的标准方程.①一个焦点坐标为;②经过点;③离心率为.你选择的两个条件是___________,得到的双曲线M的标准方程是___________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知数列是公差为2的等差数列,它的前n项和为Sn,且成等比数列.(1)求的通项公式;(2)求数列的前n项和.18.(12分)已知函数.(1)求曲线在处的切线方程;(2)求曲线过点的切线方程.19.(12分)已知圆,P(2,0),M点是圆Q上任意一点,线段PM的垂直平分线交半径MQ于点C,当M点在圆上运动时,点C的轨迹为曲线C(1)求曲线C方程;(2)已知直线l:x=8,A、B是曲线C上的两点,且不在x轴上,,垂足为,,垂足为,若D(3,0),且的面积是△ABD面积的5倍,求△ABD面积的最大值20.(12分)已知函数(1)当时,求函数的单调区间;(2)设,,求证:;(3)当时,恒成立,求的取值范围21.(12分)《中华人民共和国道路交通安全法》第47条的相关规定:机动车行经人行横道时,应当减速慢行;遇行人正在通过人行横道,应当停车让行,俗称“礼让斑马线”,其中第90条规定:对不礼让行人的驾驶员处以扣3分,罚款50元的处罚.下表是某市一主干路口监控设备所抓拍的5个月内驾驶员不“礼让斑马线”行为统计数据:参考公式:,月份12345违章驾驶员人数1201051009580(1)请利用所给数据求违章人数y与月份x之间的回归直线方程;(2)预测该路口10月份的不“礼让斑马线”违章驾驶员人数;22.(10分)已知椭圆与抛物线有一个相同的焦点,且该椭圆的离心率为,(Ⅰ)求该椭圆的标准方程:(Ⅱ)求过点的直线与该椭圆交于A,B两点,O为坐标原点,若,求的面积.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】利用逆否命题、命题的否定、充分必要性的概念逐一判断即可.【详解】对于A,“若,则”的逆否命题是“若,则”,正确;对于B,“”的否定是”,正确;对于C,“”等价于“或,∴“是"”的充分不必要条件,错误;对于D,“或是"”的充要条件,正确.故选:C2、A【解析】利用方程表示双曲线求出的取值范围,利用集合的包含关系可判断(1)的正误;直接判断命题的正误,可判断(2)的正误;利用空间向量垂直的坐标表示可判断(3)的正误;利用椭圆的有界性可判断(4)的正误.【详解】对于(1),若曲线为双曲线,则,即,解得或,因为或,因此,是为双曲线的充分不必要条件,(1)错;对于(2),若,则或,(2)错;对于(3),,则,(3)对;对于(4),设点为椭圆上一点,则且,则点到点的距离为,(4)错.故选:A.3、B【解析】根据基本初等函数的导数公式及求导法则求导函数即可.【详解】.故选:B.4、D【解析】在△中有,再应用正弦定理求,再在△中,即可求塔高.【详解】由题设知:,又,△中,可得,在△中,,则.故选:D5、C【解析】由图可知切线斜率为,∴.故选:C.6、B【解析】做出,满足约束条件的可行域,结合图形可得答案.【详解】做出,满足约束条件可行域如图,化为,平移直线,当直线经过点时有最小值,由得,所以的最小值为.故选:B.7、B【解析】全称命题的否定特称命题,任意改为存在,把结论否定.【详解】全称量词命题的否定是特称命题,需要将全称量词换为存在量词,答案A,C不符合题意,同时对结论进行否定,所以:有的圆的内接四边形不是矩形,故选:B.8、C【解析】先求出AB坐标,表示出,规定函数,其中,利用导数求最小值.【详解】联立解得可得点.联立解得可得点.由题意可得解得,令,其中,∴.∴函数单调递减;.因此,的最小值为故选:C【点睛】距离的最值求解:(1)几何法求最值;(2)代数法:表示出距离,利用函数求最值.9、A【解析】根据圆的方程、椭圆的方程、双曲线的方程和抛物线的方程特征即可判断.【详解】解:对A:因为曲线C的方程中都是二次项,所以根据抛物线标准方程的特征曲线C不可能是抛物线,故选项A正确;对B:当时,曲线C为双曲线,故选项B错误;对C:当时,曲线C为圆,故选项C错误;对D:当且时,曲线C为椭圆,故选项D错误;故选:A.10、D【解析】由抛物线准线与圆相切,结合抛物线方程,令求切线方程且抛物线准线方程为,即可求参数p.【详解】圆的标准方程为:,故当时,有或,所以或,得或6故选:D11、B【解析】根据给定条件利用中点坐标公式及空间向量模长的坐标表示计算作答.【详解】因点,,所以线段的中点坐标为,.故选:B12、B【解析】根据异面直线的定义找出角即为所求,再利用余弦定理解三角形即可得出.【详解】分别取BC,PB的中点F,G,连接DF,FG,DG,如图,因为E为AD的中点,四边形ABCD是菱形,所以,所以(其补角)是异面直线PC与BE所成的角因为底面ABCD是边长为4菱形,且,,由余弦定理可知,所以,所以,所以异面直线PC与BE所成角的余弦值为,故选:B二、填空题:本题共4小题,每小题5分,共20分。13、2【解析】利用,两边平方后,利用向量数量积计算公式,计算得.【详解】对两边平方并化简得,故.【点睛】本小题主要考查空间向量的加法和减法运算,考查空间向量数量积的表示,属于中档题.14、(1)的最小正周期为,的最大值为1(2)【解析】(1)直接根据的表达式和正弦函数的性质可得到的最小正周期和最大值;(2)先根据求得角的大小为,然后在中利用余弦定理求得,最后根据三角形的面积公式即可【小问1详解】已知则的最小正周期为:则的最大值为:【小问2详解】由可得:()或()又为锐角,则可得:.在中,由余弦定理可得:,即又,解得:则的面积为:15、【解析】由题意可得与的图象有三个不同的交点,经判断时不符合题意,当时,时,两个函数图象有一个交点,可得时与的图象有两个交点,等价于与的图象有两个不同的交点,对求导,数形结合即可求解.【详解】令可得,若函数函数有三个零点,则可得方程有三个根,即与的图象有三个不同的交点,作出的图象如图:当时,是以为顶点开口向下的抛物线,此时与的图象没有交点,不符合题意;当时,与的图象只有一个交点,不符合题意;当时,时,与的图象有一个交点,所以时与的图象有两个交点,即方程有两个不等的实根,即方程有两个不等的实根,可得与的图象有两个不同的交点,令,则,由即可得,由即可得,所以在单调递增,在单调递减,作出其图象如图:当时,,当时,可得与的图象有两个不同的交点,即时,函数有三个零点,所以实数的取值范围为,故答案为:【点睛】方法点睛:已知函数有零点(方程有根)求参数值(取值范围)常用的方法:(1)直接法:直接求解方程得到方程的根,再通过解不等式确定参数范围;(2)分离参数法:先将参数分离,转化成求函数的值域问题加以解决;(3)数形结合法:先对解析式变形,进而构造两个函数,然后在同一平面直角坐标系中画出函数的图象,利用数形结合的方法求解.16、①.①②或①③或②③②.或或【解析】选①②,根据焦点坐标及顶点坐标直接求解,选①③,根据焦点坐标及离心率求出即可得解,选②③,可由顶点坐标及离心率得出,即可求解.【详解】选①②,由题意则,,,双曲线的标准方程为,故答案为:①②;,选①③,由题意,,,,双曲线的标准方程为,选②③,由题意知,,,双曲线的标准方程为.故答案为:①②;或①③;或②③;.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1),(2)【解析】(1)由题意可得,从而可求出,进而可求得的通项公式;(2)由(1)可得,然后利用裂项相消求和法可求得结果【详解】(1)因为数列是公差为2的等差数列,且成等比数列,所以即,解得,所以;(2)由(1)得,所以.18、(1);(2).【解析】(1)首先求导函数,计算,接着根据导数的几何意义确定切线的斜率,最后根据点斜式写出直线方程即可;(2)因为点不在曲线上,所以设切点为,根据导数的几何意义写出切线的方程,代入点求解,最后写出切线方程即可.【详解】(1).,.所以曲线在处的切线方程为,即(2)设切点为,则曲线在点处的切线方程为,代入点得,,.所以曲线过点的切线方程为,即.19、(1)(2)【解析】(1)由定义法求出曲线C的方程;(2)先判断出直线AB过定点H(2,0)或H(4,0).当AB过定点H(4,0),求出最大;当H(2,0)时,可设直线AB:.用“设而不求法”表示出,不妨设(),利用函数的单调性求出△ABD面积的最大值.【小问1详解】因为线段PM的垂直平分线交半径MQ于点C,所以,所以,符合椭圆的定义,所以点C的轨迹为以P、Q为焦点的椭圆,其中,所以,所以曲线C的方程为.【小问2详解】不妨设直线l:x=8交x轴于G(8,0),直线AB交x轴于H(h,0),则,.因为,,,所以.又因为的面积是△ABD面积的5倍,所以.因为G(8,0),D(3,0),所以,所以H(2,0)或H(4,0).当H(4,0)时,则H与A(或H与B)重合,不妨设H与A重合,此时,,要使△ABD面积最大,只需B在短轴顶点时,=2最大,所以最大;当H(2,0)时,要想构成三角形ABD,直线AB的斜率不为0,可设直线AB:.设,则,消去x可得:,所以,,,所以.不妨设(),则,由对勾函数的性质可知,在上单调递减,所以当t=4时,,此时最大综上所述,△ABD面积的最大值为.【点睛】(1)“设而不求”是一种在解析几何中常见的解题方法,可以解决直线与二次曲线相交的问题;(2)解析几何中最值计算方法有两类:①几何法:利用几何图形求最值;②代数法:表示为函数,利用函数求最值.20、(1)函数单调递增区间为(0,1),单调递减区间为(1,+∞)(2)证明见解析(3)[1,+∞)【解析】(1)对函数求导后,由导数的正负可求出函数的单调区间,(2)由(1)可得,令,则可得,然后利用累加法可证得结论,(3)由,故,然后分和讨论的最大值与比较可得结果【小问1详解】当时,(),则,由,解得;由,解得,因此函数单调递增区间为(0,1),单调递减区间为(1,+∞)【小问2详解】由(1)知,当k=1时,,故令,则,即,所以【小问3详解】由,故当时,因为,所以,因此恒成立,且的根至多一个,故在(0,1]上单调递
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025贵州省建筑安全员考试题库附答案
- 制造业数字化转型效果评估指标体系
- 2025年度演艺活动及赞助合同3篇
- 2025版教师劳动合同中的教育改革与创新3篇
- 学科发展与研究生培养模式的关系
- 2025年湖南建筑安全员知识题库附答案
- 2025山西省安全员-C证(专职安全员)考试题库
- 2025广东建筑安全员-B证(项目经理)考试题库
- 2025版火锅店装修改造与品牌定位提升合同
- 2025年粤教新版二年级语文上册月考试卷
- 事故隐患报告和举报奖励制度
- 腹部外伤门诊病历
- 品质异常处理及要求培训
- 模具部年终总结--ppt课件
- 立式热虹吸再沸器机械设计说明书
- 国家开放大学电大《生产与运作管理》2025-2026期末试题及答案
- 质量保证大纲(共14页)
- 关于欧盟新版EMC标准EN55032的解析
- 木材材积表0.1-10米.xls
- 轻质隔墙板安装合同协议书范本标准版
- 车辆管理各岗位绩效考核量表
评论
0/150
提交评论