辽宁省大连金州高级中学2023-2024学年高二数学第一学期期末考试模拟试题含解析_第1页
辽宁省大连金州高级中学2023-2024学年高二数学第一学期期末考试模拟试题含解析_第2页
辽宁省大连金州高级中学2023-2024学年高二数学第一学期期末考试模拟试题含解析_第3页
辽宁省大连金州高级中学2023-2024学年高二数学第一学期期末考试模拟试题含解析_第4页
辽宁省大连金州高级中学2023-2024学年高二数学第一学期期末考试模拟试题含解析_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

辽宁省大连金州高级中学2023-2024学年高二数学第一学期期末考试模拟试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.南宋数学家杨辉所著的《详解九章算法》中有如下俯视图所示的几何体,后人称之为“三角垛”.其最上层有1个球,第二层有3个球,第三层有6个球,…,则第十层球的个数为()A.45 B.55C.90 D.1102.等比数列的各项均为正数,且,则A. B.C. D.3.过点,且斜率为2的直线方程是A. B.C. D.4.按照小李的阅读速度,他看完《三国演义》需要40个小时.2021年12月20日,他开始阅读《三国演义》,当天他读了20分钟,从第二天开始,他每天阅读此书的时间比前一天增加10分钟,则他恰好读完《三国演义》的日期为()A.2022年1月8日 B.2022年1月9日C.2022年1月10日 D.2022年1月11日5.已知数列的通项公式为,则“”是“数列为单调递增数列”的()A.充分而不必要条件 B.必要而不充分条件C.充分必要条件 D.既不充分也不必要条件6.抛物线的焦点坐标为A. B.C. D.7.已知椭圆:,左、右焦点分别为,过的直线交椭圆于两点,若的最大值为5,则的值是A.1 B.C. D.8.从0,2中选一个数字,从1,3,5中选两个数字,组成无重复数字的三位数,其中偶数的个数为()A.24 B.18C.12 D.69.设是等差数列的前项和,已知,,则等于()A. B.C. D.10.若,则()A.1 B.2C.3 D.411.已知等比数列{an}的前n项和为S,若,且,则S3等于()A.28 B.26C.28或-12 D.26或-1012.已知直线与抛物线C:相交于A,B两点,O为坐标原点,,的斜率分别为,,则()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.总书记在“十九大”报告中指出:坚定文化自信,推动中华优秀传统文化创造性转化.“杨辉三角”揭示了二项式系数在三角形中的一种几何排列规律,最早在中国南宋数学家杨辉1261年所著的《详解九章算法》一书中出现,欧洲数学家帕斯卡在1654年才发现这一规律,比杨辉要晚近四百年.“杨辉三角”是中国数学史上的一个伟大成就,激发起一批又一批数学爱好者的探究欲望.如图所示,在由二项式系数所构成的“杨辉三角中,第10行第8个数是______14.点P是棱长为1的正方体ABCD﹣A1B1C1D1的底面A1B1C1D1上一点,则的取值范围是__.15.已知,是双曲线的两个焦点,以线段为边作正,若边的中点在双曲线上,则双曲线的离心率____________.16.已知圆M过,,且圆心M在直线上.(1)求圆M的标准方程;(2)过点的直线m截圆M所得弦长为,求直线m的方程;三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)如图1,在中,,,,分别是,边上的中点,将沿折起到的位置,使,如图2(1)求点到平面距离;(2)在线段上是否存在一点,使得平面与平面夹角的余弦值为.若存在,求出长;若不存在,请说明理由18.(12分)各项都为正数的数列的前项和为,且满足.(1)求数列的通项公式;(2)求;(3)设,数列的前项和为,求使成立的的最小值.19.(12分)甲、乙两人独立地对某一目标射击,已知甲、乙能击中的概率分别为,求:(1)甲、乙恰好有一人击中的概率;(2)目标被击中的概率20.(12分)已知动圆过定点,且与直线相切,圆心的轨迹为(1)求动点的轨迹方程;(2)已知直线交轨迹于两点,,且中点的纵坐标为,则的最大值为多少?21.(12分)已知函数(1)解不等式;(2)若不等式对恒成立,求实数m的取值范围22.(10分)数列{}的首项为,且(1)证明数列为等比数列,并求数列{}的通项公式;(2)若,求数列{}的前n项和

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】根据题意,发现规律并将规律表达出来,第层有个球.【详解】根据规律,可以得知:第一层有个球;第二层有个球;第三层有个球,则根据规律可知:第层有个球设第层的小球个数为,则有:故第十层球的个数为:故选:2、B【解析】根据等比数列的性质,结合已知条件,求得,进而求得的值.【详解】由于数列是等比数列,故,所以,故.故选B.【点睛】本小题主要考查等比数列的性质,考查对数运算,属于基础题.3、A【解析】由直线点斜式计算出直线方程.【详解】因为直线过点,且斜率为2,所以该直线方程为,即.故选【点睛】本题考查了求直线方程,由题意已知点坐标和斜率,故选用点斜式即可求出答案,较为简单.4、B【解析】由等差数列前n项和列不等式求解即可.【详解】由题知,每天的读书时间为等差数列,首项为20,公差为10,记n天读完.则40小时=2400分钟,令,得或(舍去),故,即第21天刚好读完,日期为2022年1月9日.故选:B5、A【解析】根据充分条件和必要条件的定义,结合数列的单调性判断【详解】根据题意,已知数列的通项公式为,若数列为单调递增数列,则有(),所以,因为,所以,所以当时,数列为单调递增数列,而当数列为单调递增数列时,不一定成立,所以“”是“数列为单调递增数列”的充分而不必要条件,故选:A6、D【解析】抛物线的标准方程为,从而可得其焦点坐标【详解】抛物线的标准方程为,故其焦点坐标为,故选D.【点睛】本题考查抛物线的性质,属基础题7、D【解析】由题意可知椭圆是焦点在x轴上的椭圆,利用椭圆定义得到|BF2|+|AF2|=8﹣|AB|,再由过椭圆焦点的弦中通径的长最短,可知当AB垂直于x轴时|AB|最小,把|AB|的最小值b2代入|BF2|+|AF2|=8﹣|AB|,由|BF2|+|AF2|的最大值等于5列式求b的值即可【详解】由0<b<2可知,焦点在x轴上,∵过F1的直线l交椭圆于A,B两点,则|BF2|+|AF2|+|BF1|+|AF1|=2a+2a=4a=8∴|BF2|+|AF2|=8﹣|AB|当AB垂直x轴时|AB|最小,|BF2|+|AF2|值最大,此时|AB|=b2,则5=8﹣b2,解得b,故选D【点睛】本题考查直线与圆锥曲线的关系,考查了椭圆的定义,考查椭圆的通径公式,考查计算能力,属于中档题8、C【解析】根据题意,结合计数原理中的分步计算,以及排列组合公式,即可求解.【详解】根据题意,要使组成无重复数字的三位数为偶数,则从0,2中选一个数字为个位数,有种可能,从1,3,5中选两个数字为十位数和百位数,有种可能,故这个无重复数字的三位数为偶数的个数为.故选:C.9、C【解析】依题意有,解得,所以.考点:等差数列的基本概念.【易错点晴】本题主要考查等差数列的基本概念.在解有关等差数列的问题时可以考虑化归为和等基本量,通过建立方程(组)获得解.即等差数列的通项公式及前项和公式,共涉及五个量,知其中三个就能求另外两个,即知三求二,多利用方程组的思想,体现了用方程的思想解决问题,注意要弄准它们的值.运用方程的思想解等差数列是常见题型,解决此类问题需要抓住基本量、,掌握好设未知数、列出方程、解方程三个环节,常通过“设而不求,整体代入”来简化运算10、C【解析】由二项分布的方差公式即可求解.【详解】解:因为,所以.故选:C.11、C【解析】根据等比数列的通项公式列出方程求解,直接计算S3即可.【详解】由可得,即,所以,又,解得,所以,即,当时,,所以,当时,,所以,故选:C12、C【解析】设,,由消得:,又,由韦达定理代入计算即可得答案.【详解】设,,由消得:,所以,故.故选:C【点睛】本题主要考查了直线与抛物线的位置关系,直线的斜率公式,考查了转化与化归的思想,考查了学生的运算求解能力.二、填空题:本题共4小题,每小题5分,共20分。13、120【解析】根据二项式的展开式系数的相关知识即可求解.【详解】因为,二项式展开式第项的系数为,所以,第10行第8个数是.故答案为:12014、[﹣,0]【解析】建立空间直角坐标系,设出点P的坐标为(x,y,z),则由题意可得0≤x≤1,0≤y≤1,z=1,计算•x2﹣x,利用二次函数的性质求得它的值域即可【详解】解:以点D为原点,以DA所在的直线为x轴,以DC所在的直线为y轴,以DD1所在的直线为z轴,建立空间直角坐标系,如图所示;则点A(1,0,0),C1(0,1,1),设点P的坐标为(x,y,z),由题意可得0≤x≤1,0≤y≤1,z=1;∴(1﹣x,﹣y,﹣1),(﹣x,1﹣y,0),∴•x(1﹣x)﹣y(1﹣y)+0=x2﹣x+y2﹣y,由二次函数的性质可得,当x=y时,•取得最小值为;当x=0或1,且y=0或1时,•取得最大值为0,则•的取值范围是[,0]故答案为:[,0]【点睛】本题主要考查了向量在几何中的应用与向量的数量积运算问题,是综合性题目15、##【解析】根据线段为边作正,得到M在y轴上,求得M的坐标,再由,得到边的中点坐标,代入双曲线方程求解.【详解】以线段为边作正,则M在y轴上,设,则,因为,所以边的中点坐标为,因为边的中点在双曲线上,所以,因为,所以,即,解得,因为,所以,故答案为:16、(1)(2)或【解析】(1)首先由条件设圆的标准方程,再将圆上两点代入,即可求得圆的标准方程;(2)分斜率不存在和存在两种情况,分别根据弦长公式,求得直线方程.【小问1详解】圆心在直线上,设圆的标准方程为:,圆过点,,,解得圆的标准方程为【小问2详解】①当斜率不存在时,直线m的方程为:,直线m截圆M所得弦长为,符合题意②当斜率存在时,设直线m:,圆心M到直线m的距离为根据垂径定理可得,,,解得直线m方程为或.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)存在,【解析】(1)根据题意分别由已知条件计算出的面积和的面积,利用求解,(2)如图建立空间直角坐标系,设,然后求出平面与平面的法向量,利用向量平夹角公式列方程可求得结果【小问1详解】在中,,因为,分别是,边上的中点,所以∥,,所以,所以,因为,所以平面,所以平面,因为平面,所以,所以,因为平面,平面,所以平面平面,因为,所以,因为,所以是等边三角形,取的中点,连接,则,,因为平面平面,平面平面,平面,所以平面,在中,,所以边上的高为,所以,在梯形中,,设点到平面的距离为,因为,所以,所以,得,所以点到平面的距离为【小问2详解】由(1)可知平面,,所以以为原点,建立如图所示的空间直角坐标系,则,设,则,设平面的法向量为,则,令,则,设平面的法向量为,则,令,则,则平面与平面夹角的余弦值为,两边平方得,,解得或(舍去),所以,所以18、(1)(2)(3)【解析】(1)直接利用数列的递推关系式,结合等差数列的定义,即可求得数列的通项公式;(2)化简,结合裂项相消法求出数列的和;(3)利用分组法求得,结合,即可求得的最小值.【小问1详解】解:因为各项都为正数的数列的前项和为,且满足,当时,解得;当时,;两式相减可得,整理得(常数),故数列是以2为首项,2为公差的等差数列;所以.【小问2详解】解:由,可得,所以,所以.【小问3详解】解:由,可得,所以当为偶数时,,因为,且为偶数,所以的最小值为48;当为奇数时,,不存在最小的值,故当为48时,满足条件.19、(1);(2).【解析】(1)分为甲击中且乙没有击中,和乙击中且甲没有击中两种情况,进而根据独立事件概率公式求得答案;(2)先考虑甲乙都没有击中,进而根据对立事件概率公式和独立事件概率公式求得答案.【小问1详解】设甲、乙分别击中目标为事件,,易知,相互独立且,,甲、乙恰好有一人击中的概率为.【小问2详解】目标被击中的概率为.20、(1)(2)【解析】(1)利用抛物线的定义直接可得轨迹方程;(2)设直线方程,联立方程组,结合根与系数关系可得,再根据二次函数的性质可得最值.【小问1详解】由题设点到点的距离等于它到的距离,点的轨迹是以为焦点,为准线的抛物线,所求轨迹的方程为;【小问2详解】由题意易知直线的斜率存在,设中点为,直线的方程为,联立直线与抛物线,得,,且,,又中点为,即,,故恒成立,,,所以,当时,取最大值为.【点睛】(1)直线与抛物线的位置关系和直线与椭圆、双曲线的位置关系类似,一般要用到根与系数的关系;(2)有关直线与抛物线的弦长问题,要注意直线是否过抛物线的焦点,若过抛物线的焦点,可直接使用公式|AB|=x1+x2+p,若不过焦点,则必

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论