版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
辽宁省抚顺市六校联合体2024届高二上数学期末预测试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.函数的单调增区间为()A. B.C. D.2.已知数列中,前项和为,且点在直线上,则=A. B.C. D.3.已知圆的方程为,则实数m的取值范围是()A. B.C. D.4.“冰雹猜想”数列满足:,,若,则()A.4 B.3C.2 D.15.过椭圆右焦点作x轴的垂线,并交C于A,B两点,直线l过C的左焦点和上顶点.若以线段AB为直径的圆与有2个公共点,则C的离心率e的取值范围是()A. B.C. D.6.某同学为了调查支付宝中的75名好友的蚂蚁森林种树情况,对75名好友进行编号,分别为1,2,…,75,采用系统抽样的方法抽取一个容量为5的样本,已知11号,26号,56号,71号好友在样本中,则样本中还有一名好友的编号是()A.40 B.41C.42 D.397.抛物线焦点坐标为()A. B.C. D.8.把直线绕原点逆时针转动,使它与圆相切,则直线转动的最小正角度A. B.C. D.9.已知双曲线=1的一条渐近线方程为x-4y=0,其虚轴长为()A.16 B.8C.2 D.110.函数,的值域为()A. B.C. D.11.“”是“直线和直线垂直”的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件12.蟋蟀鸣叫可以说是大自然优美、和谐的音乐,殊不知蟋蟀鸣叫的频率(每分钟鸣叫的次数)与气温(单位:℃)存在着较强的线性相关关系.某地观测人员根据如表的观测数据,建立了关于的线性回归方程,则下列说法不正确的是()(次数/分钟)2030405060(℃)2527.52932.536A.的值是20B.变量,呈正相关关系C.若的值增加1,则的值约增加0.25D.当蟋蟀52次/分鸣叫时,该地当时的气温预报值为33.5℃二、填空题:本题共4小题,每小题5分,共20分。13.若球的大圆的面积为,则该球的表面积为___________.14.设正方形的边长是,在该正方形区域内随机取一个点,则此点到点的距离大于的概率是_____15.某班有位同学,将他们从至编号,现用系统抽样的方法从中选取人参加文艺演出,抽出的编号从小到大依次排列,若排在第一位的编号是,那么第四位的编号是______16.过点作圆的切线,则切线的方程为________三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)年月初,浙江杭州、宁波、绍兴三地相继爆发新冠肺炎疫情.疫情期间口罩需求量大增,某医疗器械公司开始生产口罩,并且对所生产口罩的质量按指标测试分数进行划分,其中分数不小于的为合格品,否则为不合格品,现随机抽取件口罩进行检测,其结果如表:测试分数数量(1)根据表中数据,估计该公司生产口罩的不合格率;(2)若用分层抽样的方式按是否合格从所生产口罩中抽取件,再从这件口罩中随机抽取件,求这件口罩全是合格品的概率18.(12分)已知数列的前n项和,递增等比数列满足,且.(1)求数列,的通项公式;(2)求数列的前n项和为.19.(12分)如图所示,是棱长为的正方体,是棱的中点,是棱的中点(1)求直线与平面所成角的正弦值;(2)求到平面的距离20.(12分)在平面直角坐标系中,已知.(1)求直线的方程;(2)平面内的动点满足,到点与点距离的平方和为24,求动点的轨迹方程.21.(12分)已知,p:,q:(1)若p是q的充分不必要条件,求实数m的取值范围;(2)若,“p或q”为真命题,“p且q”为假命题,求实数x的取值范围22.(10分)已知数列的前n项和为,且,,数列满足:,,,.(1)求数列,的通项公式;(2)求数列的前n项和;(3)若不等式对任意恒成立,求实数k的取值范围
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】先求定义域,再求导数,令解不等式,即可.【详解】函数的定义域为令,解得故选:D【点睛】本题考查利用导数研究函数的单调性,属于中档题.2、C【解析】点在一次函数上的图象上,,数列为等差数列,其中首项为,公差为,,数列的前项和,,故选C考点:1、等差数列;2、数列求和3、C【解析】根据可求得结果.【详解】因为表示圆,所以,解得.故选:C【点睛】关键点点睛:掌握方程表示圆的条件是解题关键.4、A【解析】根据题意分别假设为奇数、偶数的情况,求出对应的即可.【详解】由题意知,因为,若为奇数时,,与为奇数矛盾,不符合题意;若为偶数时,,可得,符合题意.不符合故选:A5、A【解析】求得以为直径的圆的圆心和半径,求得直线的方程,利用圆心到直线的距离小于半径列不等式,化简后求得椭圆离心率的取值范围.【详解】椭圆的左焦点,右焦点,上顶点,,所以为直径的圆的圆心为,半径为.直线的方程为,由于以线段为直径的圆与相交,所以,,,,,所以椭圆的离心率的取值范围是.故选:A6、B【解析】根据系统抽样等距性即可确定结果.【详解】根据系统抽样等距性得:11号,26号,56号,71号以及还有一名好友的编号应该按大小排列后成等差数列,样本中还有一名好友的编号为26号与56号的等差中项,即41号,故选:B【点睛】本题考查系统抽样,考查基本分析求解能力,属基础题.7、C【解析】由抛物线方程确定焦点位置,确定焦参数,得焦点坐标【详解】抛物线的焦点在轴正半轴,,,,因此焦点坐标为故选:C8、B【解析】根据直线过原点且与圆相切,求出直线的斜率,再数形结合计算最小旋转角【详解】解析:由题意,设切线为,∴.∴或.∴时转动最小∴最小正角为.故选B.【点睛】本题考查直线与圆的位置关系,属于基础题9、C【解析】根据双曲线的渐近线方程的特点,结合虚轴长的定义进行求解即可.【详解】因为双曲线=1的一条渐近线方程为x-4y=0,所以,因此该双曲线的虚轴长为,故选:C10、D【解析】求出函数的导数,根据导数在函数最值上的应用,即可求出结果.【详解】因为,所以,令,又,所以或;所以当时,;当时,;所以在单调递增,在上单调递减;所以;又,,所以;所以函数的值域为.故选:D.11、A【解析】因为直线和直线垂直,所以或,再根据充分必要条件的定义判断得解.【详解】因为“直线和直线垂直,所以或.当时,直线和直线垂直;当直线和直线垂直时,不一定成立.所以是直线和直线垂直的充分不必要条件,故选:A12、D【解析】根据样本中心过经过线性回归方程、正相关的性质和线性回归方程的意义进行判断即可.【详解】由题意,得,,则,故A正确;由线性回归方程可知,,变量,呈正相关关系,故B正确;若的值增加1,则的值约增加0.25,故C正确;当时,,故D错误.故选:D.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】设球的半径为,则球的大圆的半径为,根据圆的面积公式列方程求出,再由球的表面积公式即可求解.【详解】设球的半径为,则球的大圆的半径为,所以球的大圆的面积为,可得,所以该球的表面积为.故答案为:.14、【解析】先求出正方形的面积,然后求出动点到点的距离所表示的平面区域的面积,最后根据几何概型计算公式求出概率.【详解】正方形的面积为,如下图所示:阴影部分的面积为:,在正方形内,阴影外面部分的面积为,则在该正方形区域内随机取一个点,则此点到点的距离大于的概率是.【点睛】本题考查了几何概型的计算公式,正确求出阴影部分的面积是解题的关键.15、29【解析】根据给定信息利用系统抽样的特征直接计算作答.【详解】因系统抽样是等距离抽样,依题意,相邻两个编号相距,所以第四位的编号是.故答案为:2916、【解析】由已知可得点M在圆C上,则过M作圆的切线与CM所在的直线垂直,求出斜率,进而可得直线方程.【详解】由圆得到圆心C的坐标为(0,
0),圆的半径,而所以点M在圆C上,则过M作圆的切线与CM所在的直线垂直,又,得到CM所在直线的斜率为,所以切线的斜率为,则切线方程为:即故答案为:.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2).【解析】(1)由题意知分数小于的产品为不合格品,故有件,一共有件口罩,即可求出口罩的不合格率.(2)先利用分层抽样确定抽取的件口罩中合格产品和不合格产品的数量分别为件和件,再利用古典概型把所有基本事件种都列举出来,在判断件口罩全是合格品的事件有种情况,即可得到答案.【小问1详解】在抽取的件产品中,不合格的口罩有(件)所以口罩为不合格品的频率为,根据频率可估计该公司所生产口罩的不合格率为【小问2详解】由题意所抽取件口罩中不合格的件,合格的件设件合格口罩记为,件不合格口罩记为而从件口罩中抽取件,共有共种情况,这件口罩全是合格品的事件有共种情况故件口罩全是合格品的概率为18、(1),(2)【解析】(1)先求,再由求出,设等比数列的公比为q,由条件可得,解出结合条件可得答案.(2)由(1)可得,利用错位相减法可求【小问1详解】,当时,,也满足上式,∴,则.设等比数列的公比为q,由得,解得或.因为是递增等比数列,所以,.【小问2详解】①①①②:∴19、(1)(2)【解析】(1)以为坐标原点,、、所在直线分别为、、轴建立空间直角坐标系,利用空间向量法可求得直线与平面所成角的正弦值;(2)求出平面的法向量,利用空间向量法可求得到平面的距离.【小问1详解】解:以为坐标原点,、、所在直线分别为、、轴建立如下图所示的坐标系则、、、、、、,所以,,设平面的一个法向量为,,,由,取,可得,所以,,直线与平面所成角的正弦为小问2详解】解:设平面的一个法向量,,,由,即,令,得,,所以点到平面的距离为即到平面的距离为20、(1)(2)【解析】(1)结合点斜式求得直线的方程.(2)设,根据已知条件列方程,化简求得的轨迹方程.【小问1详解】,于是直线的方程为,即【小问2详解】设动点,于是,代入坐标得,化简得,于是动点的轨迹方程为21、(1)(2)或【解析】(1)根据命题对应的集合是命题对应的集合的真子集列式解得结果即可得解;(2)“p或q”为真命题,“p且q”为假命题,等价于与一真一假,分两种情况列式可得结果.【详解】(1)因为p:对应的集合为,q:对应的集合为,且p是q的充分不必要条件,所以,所以,解得.(2),当时,,因为“p或q”为真命题,“p且q”为假命题,所以与一真一假,当真时,假,所以,此不等式组无解;当真时,假,所以,解得或.综上所述:实数x的取值范围是或.【点睛】结论点睛:本题考查由充分不必要条件求参数取值范围,一般可根据如下规则转化:(1)若是的必要不充分条件,则对应集合是对应集合的真子集;(2)是的充分不必要条件,则对应集合是对应集合的真子集;(3)是的充分必要条件,则对应集合与对应集合相等;(4)是的既不充分又不必要条件,对的集合与对应集合互不包含22、(1),;(2);(3).【解析】(1)由可得数列是等比数列,即可求得,由得数列是等差数列,即可求得.(2)由(1)可得,再利用错位相减法求和即得.(3)将问题等价转化为对任意恒成立,构造数列并判断其单调性,即可求解作答.【小问1详解】数列的前项和为,,,当时,,则,而当时,,即得,因此,数列是以1为首项,3
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- java员工课程设计
- 2024合同模板房屋买卖契约范本
- 小学教资考试课程设计
- 管理者的分类和角色
- 大气课程设计评语
- 防护罩课程设计尺寸
- 2024年中国多功能插芯锁市场调查研究报告
- 乔木配置方法课程设计
- 高龄产妇保健护理
- 阀体工艺及夹具课程设计
- 地理科学导论(上海师范大学-白润光)课件
- 我有一个想法三年级作文300字
- 骨科运用PDCA降低平均住院日品管圈成果汇报
- 交通运输布局对区域发展的影响-扬州的兴衰高一地理人教版(2019)必修第二册
- 公共英语(二)学习通课后章节答案期末考试题库2023年
- 医学微生物学知到章节答案智慧树2023年山东第一医科大学
- 印刷通用质量检验标准
- HL002A031从创业者的角度分析自己
- 微机原理与接口技术(楼顺天编着)课后习题答案
- 【苹果采摘机器人总体设计开题报告文献综述4200字】
- 公司电梯安全总监、电梯安全员岗位职责
评论
0/150
提交评论