辽宁省铁岭市六校2023年高二上数学期末联考模拟试题含解析_第1页
辽宁省铁岭市六校2023年高二上数学期末联考模拟试题含解析_第2页
辽宁省铁岭市六校2023年高二上数学期末联考模拟试题含解析_第3页
辽宁省铁岭市六校2023年高二上数学期末联考模拟试题含解析_第4页
辽宁省铁岭市六校2023年高二上数学期末联考模拟试题含解析_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

辽宁省铁岭市六校2023年高二上数学期末联考模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.若曲线f(x)=x2的一条切线l与直线平行,则l的方程为()A.4x-y-4=0 B.x+4y-5=0C.x-4y+3=0 D.4x+y+4=02.已知长方体中,,,则平面与平面所成的锐二面角的余弦值为()A. B.C. D.3.数列满足,,,则数列的前10项和为()A.60 B.61C.62 D.634.甲、乙两名同学同时从教室出发去体育馆打球(路程相等),甲一半时间步行,一半时间跑步;乙一半路程步行,一半路程跑步.如果两人步行速度、跑步速度均相等,则()A.甲先到体育馆 B.乙先到体育馆C.两人同时到体育馆 D.不确定谁先到体育馆5.椭圆的一个焦点坐标为,则实数m的值为()A.2 B.4C. D.6.某工厂去年的电力消耗为千瓦,由于设各更新,该工厂计划每年比上一年的电力消耗减少,则从今年起,该工厂第5年消耗的电力为()A.m千瓦 B.m千瓦C.m千瓦 D.m千瓦7.已知过点A(a,0)作曲线C:y=x•ex的切线有且仅有两条,则实数a的取值范围是()A.(﹣∞,﹣4)∪(0,+∞) B.(0,+∞)C.(﹣∞,﹣1)∪(1,+∞) D.(﹣∞,﹣1)8.已知函数f(x)的定义域为[-1,5],其部分自变量与函数值的对应情况如下表:x-10245f(x)312.513f(x)的导函数的图象如图所示.给出下列四个结论:①f(x)在区间[-1,0]上单调递增;②f(x)有2个极大值点;③f(x)的值域为[1,3];④如果x∈[t,5]时,f(x)的最小值是1,那么t的最大值为4其中,所有正确结论的序号是()A.③ B.①④C.②③ D.③④9.若直线与曲线有两个公共点,则实数的取值范围为()A. B.C. D.10.直线:和圆的位置关系是()A.相离 B.相切或相交C.相交 D.相切11.已知等差数列前项和为,若,则的公差为()A.4 B.3C.2 D.112.已知函数,,若对任意的,,都有成立,则实数的取值范围是()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.等差数列的前项和为,已知,则__.14.一道数学难题,在半小时内,甲能解决的概率是,乙能解决的概率是,两人试图独立地在半小时内解决它,则问题得到解决的概率是________.15.已知实数满足,则的取值范围是____________16.已知焦点为F的抛物线的方程为,点Q的坐标为,点P在抛物线上,则点P到y轴的距离与到点Q的距离的和的最小值为______.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)求函数在区间上的最大值和最小值18.(12分)在等差数列中,设前项和为,已知,.(1)求的通项公式;(2)令,求数列的前项和.19.(12分)二项式展开式中第五项的二项式系数是第三项系数的4倍.求:(1);(2)展开式中的所有的有理项.20.(12分)在中,已知,,,,分别为边,的中点,于点.(1)求直线方程;(2)求直线的方程.21.(12分)已知函数在区间上有最大值和最小值(1)求实数、的值;(2)设,若不等式,在上恒成立,求实数的取值范围22.(10分)已知椭圆经过点,(1)求椭圆的方程;(2)已知直线的倾斜角为锐角,与圆相切,与椭圆交于、两点,且的面积为,求直线的方程

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】设切点为,则切线的斜率为,然后根据条件可得的值,然后可得答案.【详解】设切点为,因为,所以切线的斜率为因为曲线f(x)=x2的一条切线l与直线平行,所以,即所以l的方程为,即故选:D2、A【解析】建立空间直角坐标系,求得平面的一个法向量为,易知平面的一个法向量为,由求解.【详解】建立如图所示空间直角坐标系:则,所以,设平面的一个法向量为,则,即,令,则,易知平面的一个法向量为,所以,所以平面与平面所成的锐二面角的余弦值为,故选:A3、B【解析】讨论奇偶性,应用等差、等比前n项和公式对作分组求和即可.【详解】当且为奇数时,,则,当且为偶数时,,则,∴.故选:B.4、A【解析】设出总路程与步行速度、跑步速度,表示出两人所花时间后比较不等式大小【详解】设总路程为,步行速度,跑步速度对于甲:,得对于乙:,当且仅当时等号成立,而,故,乙花时间多,甲先到体育馆故选:A5、C【解析】由焦点坐标得到,求解即可.【详解】根据焦点坐标可知,椭圆焦点在y轴上,所以有,解得故选:C.6、D【解析】根据等比数列的定义进行求解即可.【详解】因为去年的电力消耗为千瓦,工厂计划每年比上一年的电力消耗减少,所以今年的电力消耗为,因此从今年起,该工厂第5年消耗的电力为,故选:D7、A【解析】设出切点,对函数求导得到切点处的斜率,由点斜式得到切线方程,化简为,整理得到方程有两个解即可,解出不等式即可.【详解】设切点为,,,则切线方程为:,切线过点代入得:,,即方程有两个解,则有或.故答案为:A.【点睛】这个题目考查了函数的导函数的求法,以及过某一点的切线方程的求法,其中应用到导数的几何意义,一般过某一点求切线方程的步骤为:一:设切点,求导并且表示在切点处的斜率;二:根据点斜式写切点处的切线方程;三:将所过的点代入切线方程,求出切点坐标;四:将切点代入切线方程,得到具体的表达式.8、D【解析】直接利用函数的导函数的图像,进一步画出函数的图像,进一步利用函数的性质的应用求出函数的单调区间,函数的极值和端点值可得结论【详解】解:由f(x)的导函数的图像,画出的图像,如图所示,对于①,在区间上单调递减,所以①错误,对于②,有1个极大值点,2个极小值点,所以②错误,对于③,根据函数的极值和端点值可知的值域为,所以③正确,对于④,如果x∈[t,5]时,由图像可知,当f(x)的最小值是1时,t的最大值为4,所以④正确,故选:D9、D【解析】由题可知,曲线表示一个半圆,结合半圆的图像和一次函数图像即可求出的取值范围.【详解】由得,画出图像如图:当直线与半圆O相切时,直线与半圆O有一个公共点,此时,,所以,由图可知,此时,所以,当直线如图过点A、B时,直线与半圆O刚好有两个公共点,此时,由图可知,当直线介于与之间时,直线与曲线有两个公共点,所以.故选:D.10、C【解析】直线l:y﹣1=k(x﹣1)恒过点(1,1),且点(1,1)在圆上,直线的斜率存在,故可知直线l:y﹣1=k(x﹣1)和圆C:x2+y2﹣2y=0的关系【详解】圆C:x2+y2﹣2y=0可化为x2+(y﹣1)2=1∴圆心为(0,1),半径为1∵直线l:y﹣1=k(x﹣1)恒过点(1,1),且点(1,1)在圆上且直线的斜率存在∴直线l:y﹣1=k(x﹣1)和圆C:x2+y2﹣2y=0的关系是相交,故选C【点睛】本题考查的重点是直线与圆的位置关系,解题的关键是确定直线恒过定点,此题易误选B,忽视直线的斜率存在11、A【解析】由已知,结合等差数列前n项和公式、通项公式列方程组求公差即可.详解】由题设,,解得.故选:A12、B【解析】根据题意,将问题转化为对任意的,,利用导数求得的最大值,再分离参数,构造函数,利用导数求其最大值,即可求得参数的取值范围.【详解】由题可知:对任意的,,都有恒成立,故可得对任意的,;又,则,故在单调递减,在单调递增,又,,则当时,,.对任意的,,即,恒成立.也即,不妨令,则,故在单调递增,在单调递减.故,则只需.故选:B.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】根据等差数列的求和公式和等差数列的性质即可求出.【详解】因为等差数列的前项和为,,则,故答案为:33.【点睛】本题考查了等差数列的求和公式和等差数列的性质,属于基础题.14、【解析】分甲解决乙不能解决,甲不能解决乙能解决,甲能解决乙也能解决三类,利用独立事件的概率求解.【详解】因为甲能解决的概率是,乙能解决的概率是,所以问题得到解决的概率是,故答案为:15、【解析】去绝对值分别列出每个象限解析式,数形结合利用距离求解范围.【详解】当,表示椭圆第一象限部分;当,表示双曲线第四象限部分;当,表示双曲线第二象限部分;当,不表示任何图形;以及两点,作出大致图象如图:曲线上的点到的距离为,根据双曲线方程可得第二四象限双曲线渐近线方程都是,与距离为2,曲线二四象限上的点到的距离为小于且无限接近2,考虑曲线第一象限的任意点设为到的距离,当时取等号,所以,则的取值范围是故答案为:16、##【解析】利用定义将所求距离之和的最小值问题,转化为的最小值问题.【详解】焦点F坐标为,抛物线准线为,如图,作垂直于准线于A,交y轴于B,.故答案为:三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、,【解析】先求导函数,再根据导函数得到单调区间,比较极值和端点值,即可得到最大值和最小值.【详解】解:依题意,,令,得或,所以函数在和上单调递增,在上单调递减,又,,,所以,18、(1)(2)【解析】(1)根据等差数列的前项和公式,即可求解公差,再计算通项公式;(2)根据(1)的结果,利用裂项相消法求和.【小问1详解】设的公差为,由已知得,解得,所以.【小问2详解】所以.19、(1)6;(2),,【解析】(1)先得到二项展开式的通项,再根据第五项的二项式系数是第三项系数的4倍,建立方程求解.(2)根据(1)的通项公式求解.【详解】(1)二项展开式的通项.依题意得,,所以,解得.(2)由(1)得,当,3,6时为有理项,故有理有,,.【点睛】本题主要考查二项式定理的通项公式,还考查了运算求解的能力,属于基础题.20、(1);(2).【解析】(1)根据给定条件求出点D,E坐标,再求出直线DE方程作答.(2)求出直线AH的斜率,再借助直线的点斜式方程求解作答.【小问1详解】在中,,,,则边中点,边的中点,直线DE斜率,于是得,即,所以直线的方程是:.【小问2详解】依题意,,则直线BC的斜率为,又,因此,直线的斜率为,所以直线的方程为:,即.21、(1),;(2).【解析】(1)分析函数在区间上的单调性,结合已知条件可得出关于实数、的方程组,即可解得实数、的值;(2)由(1)可得,利用参变量分离法可得出,利用单调性求出函数在上的最小值,即可得出实数的取值范围.【小问1详解】解:的对称轴是,又,所以,函数在上单调递减,在上单调递增,当时,取最小值,当时,取最大值,即

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论