辽宁省辽宁省营口市开发区第一高级中学2023年数学高二上期末监测试题含解析_第1页
辽宁省辽宁省营口市开发区第一高级中学2023年数学高二上期末监测试题含解析_第2页
辽宁省辽宁省营口市开发区第一高级中学2023年数学高二上期末监测试题含解析_第3页
辽宁省辽宁省营口市开发区第一高级中学2023年数学高二上期末监测试题含解析_第4页
辽宁省辽宁省营口市开发区第一高级中学2023年数学高二上期末监测试题含解析_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

辽宁省辽宁省营口市开发区第一高级中学2023年数学高二上期末监测试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.青花瓷是中华陶瓷烧制工艺的珍品,也是中国瓷器的主流品种之一.如图,是一青花瓷花瓶,其外形上下对称,可看成是双曲线的一部分绕其虚轴旋转所形成的曲面.若该花瓶的瓶口直径为瓶身最小直径的2倍,花瓶恰好能放入与其等高的正方体包装箱内,则双曲线的离心率为()A. B.C. D.2.若数列是等比数列,且,则()A.1 B.2C.4 D.83.直线在y轴上的截距是A. B.C. D.4.已知椭圆的左、右焦点分别为,,焦距为,过点作轴的垂线与椭圆相交,其中一个交点为点(如图所示),若的面积为,则椭圆的方程为()A B.C. D.5.已知椭圆与双曲线有相同的焦点、,椭圆的离心率为,双曲线的离心率为,点P为椭圆与双曲线的交点,且,则当取最大值时的值为()A. B.C. D.6.若数列对任意满足,下面选项中关于数列的说法正确的是()A.一定是等差数列B.一定是等比数列C.可以既是等差数列又是等比数列D.可以既不是等差数列又不是等比数列7.已知为定义在R上的偶函数函数,且在单调递减.若关于的不等式在上恒成立,则实数m的取值范围是()A. B.C. D.8.在长方体中,,,分别是棱,的中点,则异面直线,的夹角为()A. B.C. D.9.已知i是虚数单位,复数z=,则复数z的虚部为()A.i B.-iC.1 D.-110.若圆与直线相切,则实数的值为()A. B.或3C. D.或11.已知,,且,则向量与的夹角为()A. B.C. D.12.经过点且与直线垂直的直线方程为()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.将一枚质地均匀的骰子,先后抛掷次,则出现向上的点数之和为的概率是________.14.平面内n条直线两两相交,且任意三条直线不过同一点,将其交点个数记为,若规定,则,,_________,_________,(用含n的式子表示)15.瑞士数学家欧拉(Euler)1765年在所著的《三角形的几何学》一书中提出:任意三角形的外心、重心、垂心在同一条直线上,后人称这条直线为欧拉线.已知的顶点,,,则欧拉线的方程为______16.设椭圆,点在椭圆上,求该椭圆在P处的切线方程______.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知p:关于x的方程至多有一个实数解,.(1)若命题p为真命题,求实数a的取值范围;(2)若p是q的充分不必要条件,求实数m的取值范围.18.(12分)已知函数.(1)当时,证明:函数图象恒在函数的图象的下方;(2)讨论方程的根的个数.19.(12分)设:,:.(1)若命题“,是真命题”,求的取值范围;(2)若是的充分不必要条件,求的取值范围.20.(12分)已知点,圆,点Q在圆上运动,的垂直平分线交于点P.(1)求动点P的轨迹的方程;(2)过点的动直线l交曲线C于A、B两点,在y轴上是否存在定点T,使以AB为直径的圆恒过这个点?若存在,求出点T的坐标,若不存在,请说明理由.21.(12分)已知二次函数,令,解得.(1)求二次函数的解析式;(2)当关于的不等式恒成立时,求实数的范围.22.(10分)已知抛物线C:(1)若抛物线C上一点P到F的距离是4,求P的坐标;(2)若不过原点O的直线l与抛物线C交于A、B两点,且,求证:直线l过定点

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】由题意作出轴截面,最短直径为2a,根据已知条件点(2a,2a)在双曲线上,代入双曲线的标准方程,结合a,b,c的关系可求得离心率e的值【详解】由题意作出轴截面如图:M点是双曲线与截面正方形的交点之一,设双曲线的方程为:最短瓶口直径为A1A2=2a,则由已知可得M是双曲线上的点,且M(2a,2a)故,整理得4a2=3b2=3(c2﹣a2),化简后得,解得故选:C2、C【解析】根据等比数列的性质,由题中条件,求出,即可得出结果.【详解】因为数列是等比数列,由,得,所以,因此.故选:C.3、D【解析】在y轴上的截距只需令x=0求出y的值即可得出.【详解】令x=0,则y=-2,即直线在y周上的截距为-2,故选D.4、A【解析】由题意可得,令,可得,再由三角形的面积公式,解方程可得,,即可得到所求椭圆的方程【详解】由题意可得,即,即有,令,则,可得,则,即,解得,,∴椭圆的方程为故选:A5、D【解析】由椭圆的定义及双曲线的定义结合余弦定理可得,,的关系,由此可得,再利用重要不等式求最值,并求此时的的值.【详解】设为第一象限的交点,、,则、,解得、,在中,由余弦定理得:,∴,∴,∴,∴,∴,,即,当且仅当,即,时等号成立,此时故选:D6、D【解析】由已知可得或,结合等差数列和等比数列的定义,可得答案【详解】由,得或,即或,若,则数列是等差数列,则B错误;若,当时,数列是等差数列,当时,数列是等比数列,则A错误数列是等差数列,也可以是等比数列;由,不能得到数列为非0常数列,则不可以既是等差又是等比数列,则C错误;可以既不是等差又不是等比数列,如1,3,5,10,20,,故D正确;故选:D7、C【解析】由条件利用函数的奇偶性和单调性,可得对恒成立,转化为且对恒成立.求得相应的最大值和最小值,从而求得的范围【详解】定义在上的函数为偶函数,且在上递减,在上单调递增,若不等式在上恒成立,即在上恒成立在上恒成立,即在上恒成立,即且在上恒成立令,则,,,,在上递增,上递减,令,当时,,在上递减,故可知,解得,所以实数m的取值范围是故选:C8、C【解析】设出长度,建立空间直角坐标系,根据向量求异面直线所成角即可.【详解】如下图所示,以,,所在直线方向,,轴,建立空间直角坐标系,设,,,,,,所以,,设异面直线,的夹角为,所以,所以,即异面直线,的夹角为.故选:C.9、C【解析】先通过复数的除法运算求出z,进而求出虚部.【详解】由题意,,则z的虚部为1.故选:C.10、D【解析】利用圆心到直线的距离等于半径可得答案.【详解】若圆与直线相切,则到直线的距离为,所以,解得,或.故选:D.11、B【解析】先求出向量与的夹角的余弦值,即可求出与的夹角.【详解】,所以,∴,∴,∴,又∵,∴与的夹角为.故选:B.12、A【解析】根据点斜式求得正确答案.【详解】直线的斜率为,经过点且与直线垂直的直线方程为,即.故选:A二、填空题:本题共4小题,每小题5分,共20分。13、【解析】将向上的点数记作,先计算出所有的基本事件数,并列举出事件“出现向上的点数之和为”所包含的基本事件,然后利用古典概型的概率公式可计算出所求事件的概率.【详解】将骰子先后抛掷次,出现向上的点数记作,则基本事件数为,向上的点数之和为这一事件记为,则事件所包含的基本事件有:、、,共个基本事件,因此,.故答案为:.【点睛】本题考查利用古典概型的概率公式计算概率,解题时一般要列举出相应的基本事件,遵循不重不漏的基本原则,考查计算能力,属于基础题.14、①.6;②..【解析】利用第条直线与前条直线相交有个交点得出与的关系后可得结论【详解】第4条直线与前三条直线有3个交点,因此,同理,由此得到第条直线与前条直线相交有个交点,所以,即所以故答案为:6;15、【解析】根据给定信息,利用三角形重心坐标公式求出的重心,再结合对称性求出的外心,然后求出欧拉线的方程作答.【详解】因的顶点,,,则的重心,显然的外心在线段AC中垂线上,设,由得:,解得:,即点,直线,化简整理得:,所以欧拉线的方程为.故答案:16、【解析】由题意可知切线的斜率存在,所以设切线方程为,代入椭圆方程中整理化简,令判别式等于零,可求出的值,从而可求得切线方程【详解】由题意可知切线的斜率存在,所以设切线方程为,将代入中得,,化简整理得,令,化简整理得,即,解得,所以切线方程为,即,故答案为:三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)【解析】(1)根据命题p为真命题,可得,解之即可得解;(2)若p是q的充分不必要条件,则,列出不等式组,解之即可得出答案.【小问1详解】解:命题p:关于x的方程至多有一个实数解,∴,解得,∴实数a的取值范围是;【小问2详解】解:命题,∵p是q的充分不必要条件,∴,∴,且两式等号不能同时取得,解得,∴实数m的取值范围是.18、(1)证明见解析(2)答案见解析【解析】(1)构造函数,利用导数判断单调性,并求出函数的最大值小于零,即,即可得证;(2)将方程根的个数转化为函数图象与交点的问题,大致画出函数的图象,即可求解.【小问1详解】设,其中,则,在区间上,单调递减,又∵,即时,,∴,∴在区间上函数的图象恒在函数的图象的下方.【小问2详解】由得,即,令,则,令,得,当时,,单调递增,当时,,单调递减,∴在处取得最小值,∴,又∵当时,,当时,,有零点存在性定理可知函数有唯一的零点,∴的大致图象如图所示,∴当时,方程的根的个数为0;当或时,方程的根的个数为1;当时,方程的根的个数为2.19、(1)(2)【解析】(1)解不等式得到解集,根据题意列出不等式组,求出的取值范围;(2)先解不等式,再根据充分不必要条件得到是的真子集,进而求出的取值范围.【小问1详解】因为,由可得:,因为“,”为真命题,所以,即,解得:.即的取值范围是.【小问2详解】因为,由可得:,,因为是的充分不必要条件,所以是的真子集,所以(等号不同时取),解得:,即的取值范围是.20、(1);(2)存在,T(0,1)﹒【解析】(1)根据椭圆的定义,结合即可求P的轨迹方程;(2)假设存在T(0,t),设AB方程为,联立直线方程和椭圆方程,代入=0即可求出定点T.【小问1详解】由题可知,,则,由椭圆定义知P的轨迹是以F1、为焦点,且长轴长为的椭圆,∴,∴,∴P的轨迹方程为C:;【小问2详解】假设存在T(0,t)满足题意,易得AB的斜率一定存在,否则不会存在T满足题意,设直线AB的方程为,联立,化为,易知恒成立,∴(*)由题可知,将(*)代入可得:即∴,解,∴在y轴上存在定点T(0,1),使以AB为直径的圆恒过这个点T.21、(1);(2).【解析】(1)利用一元二次不等式的解集是,得到-3,2是方程的两个根,根据根与系数之间的关系,即可求,;(2)根据题意,得出不等式恒成立,则,解不等式即可求出实数的范围.详解】解:(1)由题可知,,解得:,则-3,2是方程的两个根,且,所以由根与系数之间的关系得,解得,所以二次函数的解析式为:;(2)由于不等式恒成立,即恒成立,则,解得:,所以实数的范围为.【点睛】本题考查由一元二次不等式的解集求函数解析式,以及不等式恒成立问题求参数范围,考查根与系

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论