版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
辽宁省辽阳县2023年高二上数学期末经典试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.如图,把椭圆的长轴分成6等份,过每个分点作x轴的垂线交椭圆的上半部分于点,F是椭圆C的右焦点,则()A.20 B.C.36 D.302.若数列满足,则()A. B.C. D.3.已知为虚数单位,复数是纯虚数,则()A. B.4C.3 D.24.已知数列满足,若.则的值是()A. B.C. D.5.已知f(x)是定义在R上的函数,且f(2)=2,,则f(x)>x的解集是()A. B.C. D.6.等轴双曲线渐近线是()A. B.C. D.7.《九章算术》与《几何原本》并称现代数学的两大源泉.在《九章算术》卷五商功篇中介绍了羡除(此处是指三面为等腰梯形,其他两侧面为直角三角形的五面体)体积的求法.在如图所示的羡除中,平面是铅垂面,下宽,上宽,深,平面BDEC是水平面,末端宽,无深,长(直线到的距离),则该羡除的体积为()A. B.C. D.8.已知为坐标原点,点的坐标为,点的坐标满足,则的最小值为()A B.C. D.49.命题“,”的否定是A, B.,C., D.,10.若连续抛掷两次骰子得到的点数分别为m,n,则点P(m,n)在直线x+y=4上的概率是()A. B.C. D.11.方程表示的曲线为焦点在y轴上的椭圆,则k的取值范围是()A. B.C.或 D.12.已知对称轴为坐标轴的双曲线的两渐近线方程为,若双曲线上有一点,使,则双曲线的焦点()A.在轴上 B.在轴上C.当时在轴上 D.当时在轴上二、填空题:本题共4小题,每小题5分,共20分。13.直线与直线间的距离为___________.14.已知向量,,若与垂直,则___________.15.某工厂年前加紧手套生产,设该工厂连续5天生产的手套数依次为,,,,(单位:万只),若这组数据,,,,的方差为4,且,,,,的平均数为8,则该工厂这5天平均每天生产手套______万只16.设函数(1)求的最小正周期和的最大值;(2)已知锐角的内角A,B,C对应的边分别为a,b,c,若,且,求的面积.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知直线经过抛物线的焦点,且与抛物线相交于两点.(1)若直线的斜率为1,求;(2)若,求直线的方程.18.(12分)已知椭圆的右焦点为F(,0),且点M(-,)在椭圆上.(1)求椭圆的方程;(2)直线l过点F,且与椭圆交于A,B两点,过原点O作l的垂线,垂足为P,若,求λ的值.19.(12分)设命题p:实数x满足,其中;命题q:若,且为真,求实数x的取值范围;若是的充分不必要条件,求实数m的取值范围20.(12分)某企业计划新购买台设备,并将购买的设备分配给名年龄不同(视为技术水平不同)的技工加工一批模具,因技术水平不同而加工出的产品数量不同,故产生的经济效益也不同.若用变量表示不同技工的年龄,变量为相应的效益值(元),根据以往统计经验,他们的工作效益满足最小二乘法,且关于的线性回归方程为(1)试预测一名年龄为岁的技工使用该设备所产生的经济效益;(2)试根据的值判断使用该批设备的技工人员所产生的的效益与技工年龄的相关性强弱(,则认为与线性相关性很强;,则认为与线性相关性不强);(3)若这批设备有两道独立运行的生产工序,且两道工序出现故障的概率依次是,.若两道工序都没有出现故障,则生产成本不增加;若工序出现故障,则生产成本增加万元;若工序出现故障,则生产成本增加万元;若两道工序都出现故障,则生产成本增加万元.求这批设备增加的生产成本的期望参考数据:,参考公式:回归直线的斜率和截距的最小二乘估计分别为,,.21.(12分)给出以下三个条件:①;②,,成等比数列;③.请从这三个条件中任选一个,补充到下面问题中,并完成作答.若选择多个条件分别作答,以第一个作答计分已知公差不为0的等差数列的前n项和为,,______(1)求数列的通项公式;(2)若,令,求数列的前n项和22.(10分)在△中,角A,B,C的对边分别为a,b,c,已知,,.(1)求的大小及△的面积;(2)求的值.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】由椭圆的对称性可知,,代入计算可得答案.【详解】设椭圆左焦点为,连接由椭圆的对称性可知,,所以.故选:D.2、C【解析】利用前项积与通项的关系可求得结果.【详解】由已知可得.故选:C.3、C【解析】化简复数得,由其为纯虚数求参数a,进而求的模即可.【详解】由纯虚数,∴,解得:,则,故选:C4、D【解析】由,转化为,再由求解.【详解】因为数列满足,所以,即,因为,所以,所以,故选:D5、D【解析】构造,结合已知有在R上递增且,原不等式等价于,利用单调性求解集.【详解】令,由题设知:,即在R上递增,又,所以f(x)>x等价于,即.故选:D6、A【解析】对等轴双曲线的焦点的位置进行分类讨论,可得出等轴双曲线的渐近线方程.【详解】因为,若双曲线的焦点在轴上,则等轴双曲线的渐近线方程为;若双曲线的焦点在轴上,则等轴双曲线的渐近线方程为.综上所述,等轴双曲线的渐近线方程为.故选:A.7、C【解析】在,上分别取点,,使得,连接,,,把几何体分割成一个三棱柱和一个四棱锥,然后由棱柱、棱锥体积公式计算【详解】如图,在,上分别取点,,使得,连接,,,则三棱柱是斜三棱柱,该羡除的体积三棱柱四棱锥.故选:C【点睛】思路点睛:本题考查求空间几何体的体积,解题思路是观察几何体的结构特征,合理分割,将不规则几何体体积的计算转化为锥体、柱体体积的计算.考查了空间想象能力、逻辑思维能力、运算求解能力8、B【解析】由数量积的坐标运算求得,令,化为直线方程的斜截式,数形结合得到最优解,把最优解的坐标代入目标函数得答案【详解】解:根据题意可得,、,所以,令,由约束条件作出可行域如下图所示,由得,即,由,得,由图可知,当直线过时,直线在轴上的截距最小,有最小值为,即,所以故选:B9、C【解析】特称命题的否定是全称命题,并将结论加以否定,所以命题的否定为:,考点:全称命题与特称命题10、D【解析】利用分布计数原理求出所有的基本事件个数,在求出点落在直线x+y=4上包含的基本事件个数,利用古典概型的概率个数求出.解:连续抛掷两次骰子出现的结果共有6×6=36,其中每个结果出现的机会都是等可能的,点P(m,n)在直线x+y=4上包含的结果有(1,3),(2,2),(3,1)共三个,所以点P(m,n)在直线x+y=4上的概率是3:36=1:12,故选D考点:古典概型点评:本题考查先判断出各个结果是等可能事件,再利用古典概型的概率公式求概率,属于基础题11、D【解析】根据曲线为焦点在y轴上的椭圆可得出答案.【详解】因为方程表示的曲线为焦点在y轴上的椭圆,所以,解得.故选:D.12、B【解析】设出双曲线的一般方程,利用题设不等式,令二者平方,整理求得的,进而可判断出焦点的位置【详解】渐近线方程为,,平方,两边除,,,双曲线的焦点在轴上.故选B.【点睛】本题考查已知双曲线的渐近线方程求双曲线的方程,考查对双曲线标准方程的理解与运用,求解时要注意焦点落在轴或轴的特点,考查学生分析问题和解决问题的能力二、填空题:本题共4小题,每小题5分,共20分。13、【解析】利用平行间的距离公式可求得结果.【详解】由平行线间的距离公式可知,直线、间的距离为.故答案为:.14、【解析】根据与垂直,可知,根据空间向量的数量积运算可求出的值,结合向量坐标求向量模的求法,即可得出结果.【详解】解:与垂直,,则,解得:,,则,.故答案为:.15、2【解析】结合方差、平均数的公式列方程,化简求得正确答案.【详解】依题意设,则,.故答案为:16、(1)的最小正周期为,的最大值为1(2)【解析】(1)直接根据的表达式和正弦函数的性质可得到的最小正周期和最大值;(2)先根据求得角的大小为,然后在中利用余弦定理求得,最后根据三角形的面积公式即可【小问1详解】已知则的最小正周期为:则的最大值为:【小问2详解】由可得:()或()又为锐角,则可得:.在中,由余弦定理可得:,即又,解得:则的面积为:三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)8(2)【解析】(1)设,由,进而结合抛物线的定义,将点到焦点的距离转化为到准线的距离,最后求得答案;(2)由,所以,设出直线方程并代入抛物线方程,进而结合根与系数的关系求得答案.【小问1详解】设,抛物线的准线方程为:,因为,由抛物线定义可知,.直线,代入抛物线方程化简得:,则,所以.【小问2详解】设,代入抛物线方程化简得:,所以,因为,所以,于是则直线的方程为:.18、(1)(2)【解析】(1)求得,的值即可确定椭圆方程;(2)分类讨论直线的斜率存在和斜率不存在两种情况即可确定为定值【小问1详解】由题意知:根据椭圆的定义得:,即,所以椭圆的标准方程为【小问2详解】当直线的斜率不存在时,的方程是此时,所以当直线的斜率存在时,设直线的方程为,,,,由可得显然△,则,因为,所以所以,此时综上所述,为定值19、(1)(2)【解析】解二次不等式,其中解得,解得:,取再求交集即可;写出命题所对应的集合,命题p:,命题q:,由是的充分不必要条件,即p是q的充分不必要条件,则A是B的真子集,列不等式组可求解【详解】解:(1)由,其中;解得,又,即,由得:,又为真,则,得:,故实数x的取值范围为;由得:命题p:,命题q:,由是的充分不必要条件,即p是q的充分不必要条件,A是B的真子集,所以,即故实数m取值范围为:.【点睛】本题考查了二次不等式的解法,复合命题的真假,命题与集合的关系,属于简单题20、(1)元;(2)使用该批设备的技工人员所产生的的效益与技工年龄的相关性强;(3)0.13万元.【解析】(1)直接把代入线性回归方程即得解;(2)先求出,再代公式求出相关系数比较即得解;(3)设增加的生产成本为ξ(万元),则ξ的可能取值为0,2,3,5,求出对应的概率即得解.小问1详解】解:当时,.所以预测一名年龄为岁的技工使用该设备所产生的经济效益为元.【小问2详解】解:由题得,所以,所以.因为,所以与线性相关性很强.所以使用该批设备的技工人员所产生的的效益与技工年龄的相关性强.【小问3详解】解:设增加的生产成本为ξ(万元),则ξ的可能取值为0,2,3,5P(ξ=0)=(1﹣0.02)×(1﹣0.03)=0.9506,P(ξ=2)=0.02×(1﹣0.03)=0.0194,P(ξ=3)=(1﹣0.02)×0.03=0.0294,P(ξ=5)=0.02×0.03=0.0006所以Eξ=0×0.9506+2×0.0194+3×0.0294+5×0.0006=0.13(万元),所以这批设备增加的生产成本的期望为0.13万元.21、(1)(2)【解析】(1)若选①,则根据等差数列的前n项和公式,结合,求得公差,可得答案;若选②,则根据,,成等比数列,列出方程,结合,求得公差,可得答案;若选③,则根据,列出方程,结合,求得公差,可得答案;(2)由(1
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 湖南省衡阳市祁东县2023-2024学年高一下学期7月期末统考政治试卷
- 天津和平区高三第一次质量调查(一模)文科综合试题
- 2024年集体土地租赁承包合同范本
- 个人装修合同2024年
- 个人场地租赁合同书2024年
- 2024年贵州客运应用能力考试题库
- 2024年济南客运资格证考几个科目考试
- 2024年重庆客运驾驶从业资格证考试题库及答案
- 2019年内蒙古通辽中考满分作文《节制是为了追求》
- 2024年张家界申请客运从业资格证模拟考试
- 2025高考一轮复习:15位古代名人传记文言文挖空练习高考语文文言文备考总复习(全国)
- 2024-2030年中国电表行业发展分析及投资前景预测研究报告
- 供应链管理师技能竞赛理论考试题及答案
- 2024年部编新改版语文小学一年级上册期中考试检测题(有答案)
- GB/T 44109-2024信息技术大数据数据治理实施指南
- 《扣件式钢管脚手架安全技术规范》JGJ130-2023
- 广东省清远市英德市2023-2024学年八年级上学期期中物理试题
- 部编人教版五年级数学上册《【全册】完整版》精品PPT教学课件
- 横格-硬笔书法纸模板(可打印)
- (完整版)水利工程质量监督检查记录表汇总表
- 铝压铸基础培训ppt课件
评论
0/150
提交评论