版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
金川公司第一高级中学2024届高二上数学期末复习检测模拟试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知命题,,则p的否定是()A. B.C. D.2.已知各项均为正数的等比数列{},=5,=10,则=A. B.7C.6 D.3.中国古代《易经》一书中记载,人们通过在绳子上打结来记录数据,即“结绳计数”,如图,一位古人在从右到左(即从低位到高位)依次排列的红绳子上打结,满六进一,用6来记录每年进的钱数,由图可得,这位古人一年收入的钱数用十进制表示为()A.180 B.179C.178 D.1774.已知O为坐标原点,,点P是上一点,则当取得最小值时,点P的坐标为()A. B.C. D.5.设双曲线:(,)的右顶点为,右焦点为,为双曲线在第二象限上的点,直线交双曲线于另一个点(为坐标原点),若直线平分线段,则双曲线的离心率为()A. B.C. D.6.《莱茵德纸草书》是世界上最古老的数学著作之一.书中有这样一道题目:把个面包分给个人,使每个人所得成等差数列,且使较大的三份之和的是较小的两份之和,则最小的一份为()A. B.C. D.7.在等差数列中,为其前n项和,,则()A.55 B.65C.15 D.608.如图,在单位正方体中,以为原点,,,为坐标向量建立空间直角坐标系,则平面的法向量是()A.,1, B.,1,C.,, D.,1,9.双曲线C:的渐近线方程为()A. B.C. D.10.已知数列满足,且,那()A.19 B.31C.52 D.10411.设,,则“”是“”的A.充要条件 B.充分而不必要条件C.必要而不充分条件 D.既不充分也不必要条件12.设是两个非零向量,则“”是“夹角为钝角”的A.充分不必要条件 B.必要不充分条件C.充分必要条件 D.既不充分也不必要条件二、填空题:本题共4小题,每小题5分,共20分。13.已知等差数列的公差,等比数列的公比q为正整数,若,,且是正整数,则______14.已知直线l的方向向量,平面的法向量,若,则______15.圆上的点到直线的距离的最大值为__________.16.有公共焦点,的椭圆和双曲线的离心率分别为,,点为两曲线的一个公共点,且满足,则的值为______三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)设四边形为矩形,点为平面外一点,且平面,若,.(1)求与平面所成角的大小;(2)在边上是否存在一点,使得点到平面的距离为,若存在,求出的值,若不存在,请说明理由;(3)若点是的中点,在内确定一点,使的值最小,并求此时的值.18.(12分)某班名学生期中考试数学成绩的频率分布直方图如图所示,其中成绩分组区间是、、、.(1)估计该班本次测试的平均分;(2)在、中按分层抽样的方法抽取个数据,再从这个数据中任抽取个,求抽出个中至少有个成绩在中的概率.19.(12分)已知圆经过坐标原点和点,且圆心在轴上.(1)求圆的方程;(2)已知直线与圆相交于A、B两点,求所得弦长的值.20.(12分)某企业2021年年初有资金5千万元,由于引进了先进生产设备,资金年平均增长率可达到.每年年底扣除下一年的消费基金1.5千万元后,剩余资金投入再生产.设从2021年的年底起,每年年底企业扣除消费基金后的剩余资金依次为,,,…(1)写出,,,并证明数列是等比数列;(2)至少到哪一年的年底,企业的剩余资金会超过21千万元?(lg21.(12分)如图,在几何体中,底面是边长为2的正三角形,平面,,且是的中点.(1)求证:平面;(2)求二面角的余弦值.22.(10分)已知函数.(1)求的导数;(2)求函数的图象在点处的切线方程.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】直接根据全称命题的否定写出结论.【详解】命题,为全称命题,故p的否定是:.故选:A【点睛】全称量词命题的否定是特称(存在)量词命题,特称(存在)量词命题的否定是全称量词命题2、A【解析】由等比数列的性质知,a1a2a3,a4a5a6,a7a8a9成等比数列,所以a4a5a6=故答案为考点:等比数列的性质、指数幂的运算、根式与指数式的互化等知识,转化与化归的数学思想3、D【解析】由于从右到左依次排列的绳子上打结,满六进一,所以从右到左的数分别为、、,然后把它们相加即可.【详解】(个).所以古人一年收入的钱数用十进制表示为个.故选:D.4、A【解析】根据三点共线,可得,然后利用向量的减法坐标运算,分别求得,最后计算,经过化简观察,可得结果.【详解】设,则则∴当时,取最小值为-10,此时点P的坐标为.故选:A【点睛】本题主要考查向量数量积的坐标运算,难点在于三点共线,审清题干,简单计算,属基础题.5、A【解析】由给定条件写出点A,F坐标,设出点B的坐标,求出线段FC的中点坐标,由三点共线列式计算即得.【详解】令双曲线的半焦距为c,点,设,由双曲线对称性得,线段FC的中点,因直线平分线段,即点D,A,B共线,于是有,即,即,离心率.故选:A6、A【解析】设5人分到的面包数量从小到大记为,设公差为,可得,,求出,根据等差数列的通项公式,得到关于关系式,即可求出结论.【详解】设5人分到的面包数量从小到大记为,设公差为,依题意可得,,,,解得,.故选:A.【点睛】本题以数学文化为背景,考查等差数列的前项和、通项公式基本量的计算,等差数列的性质应用是解题的关键,属于中档题.7、B【解析】根据等差数列求和公式结合等差数列的性质即可求得.【详解】解析:因为为等差数列,所以,即,.故选:B8、A【解析】设平面的法向量是,,,由可求得法向量.【详解】在单位正方体中,以为原点,,,为坐标向量建立空间直角坐标系,,0,,,1,,,1,,,1,,,0,,设平面的法向量是,,,则,取,得,1,,平面的法向量是,1,.故选:.9、D【解析】根据给定的双曲线方程直接求出其渐近线方程作答.【详解】双曲线C:的实半轴长,虚半轴长,即有,而双曲线C的焦点在y轴上,所以双曲线C的渐近线的方程为,即.故选:D10、D【解析】根据等比数列的定义,结合等比数列的通项公式进行求解即可.【详解】因为,所以有,因此数列是公比的等比数列,因为,所以,故选:D11、C【解析】不能推出,反过来,若则成立,故为必要不充分条件.12、B【解析】因为时,夹角为钝角或平角;而当夹角为钝角时,成立,所以“”是“夹角为钝角”的必要不充分条件.故选B考点:1向量的数量积;2充分必要条件二、填空题:本题共4小题,每小题5分,共20分。13、【解析】由已知等差、等比数列以及,,是正整数,可得,结合q为正整数,进而求.【详解】由,,令,其中m为正整数,有,又为正整数,所以当时,解得,当时,解得不是正整数,故答案为:14、【解析】由,可得∥,从而可得,代入坐标列方程可求出,从而可求出【详解】因为直线l的方向向量,平面的法向量,,所以∥,所以存在唯一实数,使,所以,所以,解得,所以,故答案为:15、【解析】先求得圆心到直线的距离,结合圆上的点到直线的距离的最大值为,即可求解.【详解】由题意,圆的圆心坐标为,半径为,则圆心到直线的距离为,所以圆上的点到直线的距离的最大值为.故答案为:16、4【解析】可设为第一象限的点,,,求出,,化简即得解.【详解】解:可设为第一象限的点,,,由椭圆定义可得,由双曲线的定义可得,可得,,由,可得,即为,化为,则故答案为:4三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)存在,距离为(3)位置答案见解析,【解析】(1)利用线面垂直的判定定理证明平面,然后由线面角的定义得到PC与平面PAD所成的角为,在中,由边角关系求解即可.(2)假设BC边上存在一点G满足题设条件,不放设,则,再根据得,进而得答案.(3)延长CB到C',使得C'B=CB,连结C'E,过E作于E',利用三点共线,两线段和最小,得到,过H作于H',连结HB,在中,求解HB即可.【小问1详解】解:因为平面,平面,所以,又因为底面是矩形,所以,又平面,所以平面,故与平面所成的角为,因为,,所以故直线PC与平面PAD所成角的大小为;【小问2详解】解:假设BC边上存在一点G满足题设条件,不妨设,则因为平面,到平面的距离为所以,即因为代入数据解得,即,故存在点G,当时,使得点D到平面PAG的距离为;【小问3详解】解:延长CB到C',使得C'B=CB,连结C'E,过E作于E',则,当且仅当三点共线时等号成立,故,过H作于H',连结HB,在中,,,所以.18、(1);(2).【解析】(1)将每个矩形底边的中点值乘以对应矩形的面积,再将所得结果全部相加可得的值;(2)分析可知,所抽取的个数据中,成绩在内的有个,分别记为、、、,成绩在内的有个,分别记为、,列举出所有的基本事件,并确定所求事件所包含的基本事件,利用古典概型的概率公式可求得所求事件的概率.【小问1详解】解:由频率分布直方图可得.【小问2详解】解:因为数学成绩在、内的频率分别为、,所以,所抽取的个数据中,成绩在内的有个,分别记为、、、,成绩在内的有个,分别记为、,从这个数据中,任取抽取个,所有的基本事件有:、、、、、、、、、、、、、、,共个,其中,事件“抽出个中至少有个成绩在中”所包含的基本事件有:、、、、、、、、,共个,故所求概率为.19、(1);(2).【解析】(1)根据条件可以确定圆心坐标和半径,写出圆的方程;(2)先求圆心到直线的距离,结合勾股定理可求弦长.【详解】(1)由题意可得,圆心为(2,0),半径为2.则圆的方程为;(2)圆心(2,0)到l的距离为d,=1,.【点睛】圆的方程求解方法:(1)直接法:确定圆心,求出半径,写出方程;(2)待定系数法:设出圆的方程,可以是标准方程也可以是一般式方程,根据条件列出方程,求解系数即可.20、(1),,,证明见解析(2)至少到2026年的年底,企业的剩余资金会超过21千万元【解析】(1)由题意可知,,,,再结合等比数列的性质,即可求解(2)由(1)知,,则,令,再结合对数函数运算,即可求解【小问1详解】依题意知,,,,,所以,又,所以是首项为3,公比为1.5的等比数列.【小问2详解】由(1)知,,所以令,解得,所以,所以至少到2026年的年底,企业的剩余资金会超过21千万元21、(1)证明见解析(2)【解析】(1)取的中点F,连接EF,,由四边形是平行四边形即可求解;(2)采用建系法,以为轴,为轴,垂直底面方向为轴,求出对应点坐标,结合二面角夹角余弦公式即可求解.【小问1详解】取的中点F,连接EF,,∵,∴,且,∴,∴四
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 路缘石施工方案
- 热力能源站施工方案
- 液晶拼接屏施工方案
- 铁路路基水害复旧施工方案
- 试车跑道施工方案
- 铁路拱型护坡施工方案
- 2025年研磨抛光设备项目可行性研究报告
- 中国气象信息化建设与IT应用行业发展前景预测及投资战略研究报告
- 2025年轻型防震脚垫行业深度研究分析报告
- 2025年中国微凹黄檀行业市场发展前景及发展趋势与投资战略研究报告
- 绵阳市高中2022级(2025届)高三第二次诊断性考试(二诊)历史试卷(含答案)
- 《视频压缩基础》课件
- 2025南方财经全媒体集团校园招聘63人高频重点提升(共500题)附带答案详解
- 《A机场公司人力资源管理工作实践调研报告》2600字(论文)
- 社工人才培训计划实施方案
- 四年级数学(上)计算题专项练习及答案
- 6、水平四+田径18课时大单元计划-《双手头上前掷实心球》
- 幼儿园人民币启蒙教育方案
- 军事理论(2024年版)学习通超星期末考试答案章节答案2024年
- 青岛版科学四年级下册课程纲要
- GB/T 6672-2001塑料薄膜和薄片厚度测定机械测量法
评论
0/150
提交评论