版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
江苏省扬州市江都区大桥、丁沟、仙城中学2023-2024学年高二上数学期末监测模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.在中,内角的对边分别为,若,则角为A. B.C. D.2.已知向量,,则向量等于()A.(3,1,-2) B.(3,-1,2)C.(3,-1,-2) D.(-3,-1,-2)3.下列命题中是真命题的是()A.“”是“”的充分非必要条件B.“”是“”的必要非充分条件C.在中“”是“”的充分非必要条件D.“”是“”的充要条件4.已知直线,,若,则实数的值是()A.0 B.2或-1C.0或-3 D.-35.《周髀算经》中有这样一个问题,从冬至之日起,小寒、大寒、立春、雨水、惊蛰、春分、清明、谷雨、立夏、小满、芒种这十二个节气日影长依次成等差数列,若冬至、大寒、雨水的日影长的和为36.3尺,小寒、惊蛰、立夏的日影长的和为18.3尺,则冬至的日影长为()A4尺 B.8.5尺C.16.1尺 D.18.1尺6.某地政府为落实疫情防控常态化,不定时从当地780名公务员中,采用系统抽样的方法抽取30人做核酸检测.把这批公务员按001到780进行编号,若054号被抽中,则下列编号也被抽中的是()A.076 B.104C.390 D.5227.已知直线经过点,且是的方向向量,则点到的距离为()A. B.C. D.8.已知双曲线的左、右焦点分别为,,过点作直线交双曲线的右支于A,B两点.若,则双曲线的离心率为()A. B.C. D.9.已知等差数列满足,,数列满足,记数列的前n项和为,若对于任意的,,不等式恒成立,则实数t的取值范围为()A. B.C. D.10.已知点与不重合的点A,B共线,若以A,B为圆心,2为半径的两圆均过点,则的取值范围为()A. B.C. D.11.“”是“直线和直线垂直”的()A.充分非必要条件 B.必要非充分条件C.充要条件 D.既非充分又非必要条件12.已知椭圆的离心率为,直线与椭圆交于两点,为坐标原点,且,则椭圆的方程为A B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知函数,则________14.展开式中的系数是___________.15.设函数f(x)在R上满足f(x)+xf′(x)>0,若a=(30.3)f(30.3),b=(logπ3)·f(logπ3),则a与b的大小关系为________16.已知函数(1)求函数的最小正周期和单调递增区间;(2)在锐角三角形中,角,,所对的边分别为,,,若,,,求的面积三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知函数(1)当时,求的极值;(2)讨论的单调性18.(12分)如图是一抛物线型机械模具的示意图,该模具是抛物线的一部分且以抛物线的轴为对称轴,已知顶点深度4cm,口径长为12cm(1)以顶点为坐标原点建立平面直角坐标系(如图),求该抛物线的标准方程;(2)为满足生产的要求,需将磨具的顶点深度减少1cm,求此时该磨具的口径长19.(12分)已知.(1)当时,求曲线在点处的切线方程;(2)若在处取得极值,求在上的最小值.20.(12分)已知圆C的圆心在直线上,且过点,(1)求圆C的方程;(2)若圆C与直线交于A,B两点,______,求m的值从下列三个条件中任选一个补充在上面问题中并作答:条件①:;条件②:圆上一点P到直线的最大距离为;条件③:21.(12分)设椭圆方程为,短轴长,____________.请在①与双曲线有相同的焦点,②离心率,③这三个条件中任选一个补充在上面的横线上,完成以下问题.(1)求椭圆的标准方程;(2)求以点为中点的弦所在的直线方程.22.(10分)中国男子篮球职业联赛(ChineseBasketballAssociation),简称中职篮(CBA),由中国国家体育总局篮球运动管理中心举办的男子职业篮球赛事,旨在全面提高中国篮球运动水平,其中诞生了姚明、王治郅、易建联、朱芳雨等球星.该比赛分为常规赛和季后赛.由于新冠疫情关系,某年联赛采用赛会制:所有球队集中在同一个地方比赛,分两个阶段进行,每个阶段采用循环赛,分主场比赛和客场比赛,积分排名前8球队进入季后赛.下表是A队在常规赛60场比赛中的比赛结果记录表.阶段比赛场数主场场数获胜场数主场获胜场数第一阶段30152010第二阶段30152515(1)根据表中数据,完成下面列联表:A队胜A队负合计主场5客场20合计60(2)根据(1)中列联表,判断是否有90%的把握认为比赛的“主客场”与“胜负”之间有关?附:.0.1000.0500.025k2.7063.8415.024
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】因为,那么结合,所以cosA==,所以A=,故答案为A考点:正弦定理与余弦定理点评:本题主要考查正弦定理与余弦定理的基本应用,属于中等题.2、B【解析】根据空间向量线性运算的坐标表示即可得出答案.【详解】解:因为,,所以.故选:B.3、B【解析】根据充分条件、必要条件、充要条件的定义依次判断.【详解】当时,,非充分,故A错.当不能推出,所以非充分,,所以是必要条件,故B正确.当在中,,反之,故为充要条件,故C错;当时,,,,充分条件,因为,当时成立,非必要条件,故D错.故选:B.4、C【解析】由,结合两直线一般式有列方程求解即可.【详解】由知:,解得:或故选:C.5、C【解析】设等差数列,用基本量代换列方程组,即可求解.【详解】由题意,从冬至之日起,小寒、大寒、立春、雨水、惊蛰、春分、清明、谷雨、立夏、小满、芒种这十二个节气的日影长依次成等差数列,记为数列,公差为d,则有,即,解得:,即冬至的日影长为16.1尺.故选:C6、D【解析】根据题意,求得组数与抽中编号的对应关系,即可判断和选择.【详解】从780名公务员中,采用系统抽样的方法抽取30人做核酸检测,故需要分为组,每组人,设第组抽中的编号为,设,由题可知:,故可得,故可得.当时,.故选:.7、B【解析】求出,根据点到直线的距离的向量公式进行求解.【详解】因为,为的一个方向向量,所以点到直线的距离.故选:B8、A【解析】根据给定条件结合双曲线定义求出,,再借助余弦定理求出半焦距c即可计算作答.【详解】因,令,,而双曲线实半轴长,由双曲线定义知,,而,于是可得,在等腰中,,令双曲线半焦距为c,在中,由余弦定理得:,而,,,解得,所以双曲线的离心率为.故选:A【点睛】方法点睛:求双曲线的离心率的方法:(1)定义法:通过已知条件列出方程组,求得得值,根据离心率的定义求解离心率;(2)齐次式法:由已知条件得出关于的二元齐次方程,然后转化为关于的一元二次方程求解;(3)特殊值法:通过取特殊值或特殊位置,求出离心率.9、B【解析】由等差数列基本量法求出通项公式,用裂项相消法求得,求出的最大值,然后利用关于的不等式是一次不等式列出满足的不等关系求得其范围【详解】设等差数列公差为,则由已知得,解得,∴,,∴,易知数列是递增数列,且,∴若对于任意的,,不等式恒成立,即,又,∴,解得或故选:B【点睛】本题考查求等差数列的通项公式,考查裂项相消法求数列的和,考查不等式恒成立问题,解题关键是掌握不等式恒成立问题的转化与化归思想,不等式恒成立首先转化为求数列的单调性与最值,其次转化为一次不等式恒成立10、D【解析】由题意可得两点的坐标满足圆,然后由圆的性质可得当时,弦长最小,当过点时,弦长最长,再根据向量数量积的运算律求解即可【详解】设点,则以A,B为圆心,2为半径的两圆方程分别为和,因为两圆过,所以和,所以两点的坐标满足圆,因为点与不重合的点A,B共线,所以为圆的一条弦,所以当弦长最小时,,因为,半径为2,所以弦长的最小值为,当过点时,弦长最长为4,因为,所以当弦长最小时,的最大值为,当弦长最大时,的最小值为,所以的取值范围为,故选:D11、A【解析】根据直线垂直求出值即可得答案.【详解】解:若直线和直线垂直,则,解得或,则“”是“直线和直线垂直”的充分非必要条件.故选:A.12、D【解析】根据等腰直角三角形的性质可得,将代入椭圆方程,结合离心率为以及性质列方程组求得与的值,从而可得结果.【详解】设直线与椭圆在第一象限的交点为,因为,所以,即,由可得,,故所求椭圆的方程为.故选D.【点睛】本题主要考查椭圆的标准方程与性质,以及椭圆离心率的应用,意在考查对基础知识掌握的熟练程度,属于中档题.二、填空题:本题共4小题,每小题5分,共20分。13、.【解析】将代入计算,利用和互为相反数,作差可得,计算可得结果.【详解】解:函数则.,,作差可得:,即,解得:代入此时成立.故答案为:.14、【解析】根据二项展开式的通项公式,可知展开式中含的项,以及展开式中含的项,再根据组合数的运算即可求出结果.【详解】解:由题意可得,展开式中含的项为,而展开式中含的项为,所以的系数为.故答案为:.15、a>b【解析】构造函数F(x)=xf(x),利用F(x)的单调性求解即可.【详解】设函数F(x)=xf(x),∴F′(x)=f(x)+xf′(x)>0,∴F(x)=xf(x)在R上为增函数,又∵30.3>1,logπ3<1,∴30.3>logπ3,∴F(30.3)>F(logπ3),∴(30.3)f(30.3)>(logπ3)f(logπ3),∴a>b.故答案为:a>b.16、(1)最小正周期,,;(2)【解析】(1)根据降幂公式、辅助角公式化简函数的解析式,再利用正弦型函数的最小正周期公式、单调性进行求解即可;(2)根据特殊角的三角函数值,结合三角形面积公式进行求解即可.【详解】(1),所以的最小正周期令,,解得,,所以的单调递增区间为,(2)因为,所以,即,又,所以,所以或,或,当时,,不符合题意,舍去;当时,,符合题意,所以,,,,此时为等腰三角形,所以,所以,即的面积为三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)极小值为,无极大值(2)答案见解析【解析】(1)求出导函数,由得增区间,得减区间,从而得极值;(2)求出导函数,分类讨论确定和解得单调性小问1详解】当时,,(x>0)则令,得,得,得,所以的单调递减区间为;单调递增区间为.所以的极小值为f(2)=,无极大值.【小问2详解】令则当时,在上单调递减.当时,,得,,得;,得在上单调递减,在上单调递增,综上所述,当时,在上单调递减.当时,在上单调递减,在上单调递增.18、(1)(2)cm【解析】(1)设抛物线的标准方程为,由题意可得抛物线过点,将此点代入方程中可求出的值,从而可得抛物线方程,(2)设此时的口径长为,则抛物线过点,代入抛物线方程可求出的值,从而可求得答案【小问1详解】由题意,建立如图所示的平面直角坐标系,设抛物线的标准方程为,因为顶点深度4,口径长为12,所以该抛物线过点,所以,得,所以抛物线方程为;【小问2详解】若将磨具的顶点深度减少,设此时的口径长为,则可得,得,所以此时该磨具的口径长19、(1);(2).【解析】(1)利用导数的几何意义求切线的斜率,再利用点斜式方程即可求出切线方程;(2)根据极值点求出的值,根据导数值的正负判断函数的单调性,即可求出最小值.【小问1详解】∵,,∴∴∴在处的切线为,即;【小问2详解】∵,由题可知,∴,∴单调递增,单调递减,∵,,∴.20、(1)(2)【解析】(1)根据圆心在过点,的线段的中垂线上,同时圆心圆心在直线上,可求出圆心的坐标,进而求得半径,最后求出其标准方程;(2)选①利用用垂径定理可求得答案,选②根据圆上一点P到直线的最大距离为可求得答案,选③先利用向量的数量积可求得,解法就和选①时相同.【小问1详解】由题意可知,圆心在点的中垂线上,该中垂线的方程为,于是,由,解得圆心,圆C的半径所以,圆C的方程为;【小问2详解】①,因为,,所以圆心C到直线l的距离,则,解得,②,圆上一点P到直线的最大距离为,可知圆心C到直线l的距离则,解得,③,因为,所以,得,又,所以圆心C到直线l的距离,则,解得21、(1)答案见解析,.(2).【解析】(1)若选①:求得双曲线得双曲线的焦点得出椭圆的,再由,可求得椭圆的标准方程;若选②:根据已知条件和椭圆的离心率可求得,从而得椭圆的标准方程;若选③:由已知建立方程,求解可求得,从而得椭圆的标准方程.(2)设直线的斜率为k,所求的直线方程为,代入椭圆的方程并整理得,设直线与椭圆的交点为,由根与系数的关系和中点坐标公式可求得答案.【小问1详解】解:若选①:由双曲线得双曲线的焦点和,因为椭圆与双曲线有相同的焦点,所以椭圆的,又,所以,所以,所以椭圆的标准方程为;若选②:因为,所以,又离心率,所以,即,解得,所以
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 潍坊市房产过户手续简化合同
- 2025最材料供销合同
- 学校周边加油站租赁协议模板
- 学校宿舍外墙保温施工合同样本
- 智能监控人防系统建设协议
- 科技园区停车位租赁合同
- 基坑降水施工合同:乡村振兴工程
- 钢结构工程电子合同范本
- 建筑租赁单项施工合同
- 地下工程劳务施工合同
- 【项目方案】合同能源托管模式下开展校园综合能源建设方案-中教能研院
- 学校2025元旦假期安全教育宣传课件
- 教职工趣味运动会活动方案(7篇)
- 功能科提高动态心电图检查人次PDCA
- 语文01-2025年1月“八省联考”考前猜想卷(全解全析)
- 人教版八年级物理上册《第六章质量与密度》单元测试卷(带答案)
- 电梯维保服务客户满意度提升方案
- 项目经理年度工作总结
- 2024冬至节气的教案
- 【碳足迹报告】中车齐齐哈尔车辆有限公司产品碳足迹报告
- 2024公职人员时事政治试题库含答案(综合题)
评论
0/150
提交评论