江苏省南通市安海中学2024届高二数学第一学期期末质量跟踪监视模拟试题含解析_第1页
江苏省南通市安海中学2024届高二数学第一学期期末质量跟踪监视模拟试题含解析_第2页
江苏省南通市安海中学2024届高二数学第一学期期末质量跟踪监视模拟试题含解析_第3页
江苏省南通市安海中学2024届高二数学第一学期期末质量跟踪监视模拟试题含解析_第4页
江苏省南通市安海中学2024届高二数学第一学期期末质量跟踪监视模拟试题含解析_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

江苏省南通市安海中学2024届高二数学第一学期期末质量跟踪监视模拟试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.下列命题中是真命题的是()A.“”是“”的充分非必要条件B.“”是“”的必要非充分条件C.在中“”是“”的充分非必要条件D.“”是“”的充要条件2.在公比为为q等比数列中,是数列的前n项和,若,则下列说法正确的是()A. B.数列是等比数列C. D.3.如图,两个半径为R的相交大圆,分别内含一个半径为r的同心小圆,且同心小圆均与另一个大圆外切.已知时,在两相交大圆的区域内随机取一点,则该点取自两大圆公共部分的概率为()A. B.C. D.4.已知长方体中,,,则平面与平面所成的锐二面角的余弦值为()A. B.C. D.5.已知双曲线的离心率为5,则其标准方程为()A. B.C. D.6.为迎接2022年冬奥会,某校在体育冰球课上加强冰球射门训练,现从甲、乙两队中各选出5名球员,并分别将他们依次编号为1,2,3,4,5进行射门训练,他们的进球次数如折线图所示,则在这次训练中以下说法正确的是()A.甲队球员进球的中位数比乙队大 B.乙队球员进球的中位数比甲队大C.乙队球员进球水平比甲队稳定 D.甲队球员进球数的极差比乙队小7.在四面体OABC中,,,,则与AC所成角的大小为()A.30° B.60°C.120° D.150°8.直线l:的倾斜角为()A. B.C. D.9.抛物线的焦点坐标是A. B.C. D.10.过原点O作两条相互垂直的直线分别与椭圆交于A、C与B、D,则四边形ABCD面积最小值为()A B.C. D.11.已知A(-1,1,2),B(1,0,-1),设D在直线AB上,且,设C(λ,+λ,1+λ),若CD⊥AB,则λ的值为()A. B.-C. D.12.在长方体,,则异面直线与所成角的余弦值是()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.平行六面体中,底面是边长为1的正方形,,则对角线的长度为___.14.已知直线与抛物线相交于A,B两点,且,则抛物线C的准线方程为___________.15.设数列满足且,则________.数列的通项=________.16.若圆心坐标为圆被直线截得的弦长为,则圆的半径为______.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)在二项式的展开式中,______.给出下列条件:①若展开式前三项的二项式系数的和等于46;②所有奇数项的二项式系数的和为256.试在上面两个条件中选择一个补充在上面的横线上,并解答下列问题:(1)求展开式中二项式系数最大的项;(2)求展开式的常数项.18.(12分)已知函数.若函数有两个极值点,求实数的取值范围.19.(12分)已知椭圆的焦距为,离心率为(1)求椭圆方程;(2)设过椭圆顶点,斜率为的直线交椭圆于另一点,交轴于点,且,,成等比数列,求的值20.(12分)为了保证我国东海油气田海域海上平台的生产安全,海事部门在某平台O的北偏西45°方向km处设立观测点A,在平台O的正东方向12km处设立观测点B,规定经过O、A、B三点的圆以及其内部区域为安全预警区.如图所示:以O为坐标原点,O的正东方向为x轴正方向,建立平面直角坐标系(1)试写出A,B的坐标,并求两个观测点A,B之间的距离;(2)某日经观测发现,在该平台O正南10kmC处,有一艘轮船正以每小时km的速度沿北偏东45°方向行驶,如果航向不变,该轮船是否会进入安全预警区?如果不进入,请说明理由;如果进入,则它在安全警示区内会行驶多长时间?21.(12分)如图,从参加环保知识竞赛的学生中抽出60名,将其成绩(均为整数)整理后画出的频率分布直方图如下:观察图形,回答下列问题:(1)[79.5,89.5)这一组的频数、频率分别是多少?(2)估计这次环保知识竞赛的众数、中位数、平均数是多少?22.(10分)已知椭圆的长轴长是6,离心率是.(1)求椭圆E的标准方程;(2)设O为坐标原点,过点的直线l与椭圆E交于A,B两点,判断是否存在常数,使得为定值?若存在,求出的值;若不存在,请说明理由.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】根据充分条件、必要条件、充要条件的定义依次判断.【详解】当时,,非充分,故A错.当不能推出,所以非充分,,所以是必要条件,故B正确.当在中,,反之,故为充要条件,故C错;当时,,,,充分条件,因为,当时成立,非必要条件,故D错.故选:B.2、D【解析】根据等比数列的通项公式、前项和公式的基本量运算,即可得到答案;【详解】,,故A错误;,,显然数列不是等比数列,故B错误;,故C错误;,,故D成立;故选:D3、C【解析】设D为线段AB的中点,求得,在中,可得.进而求得两大圆公共部分的面积为:,利用几何概型计算即可得出结果.【详解】如图,设D为线段AB的中点,,在中,.两大圆公共部分的面积为:,则该点取自两大圆公共部分的概率为.故选:C.4、A【解析】建立空间直角坐标系,求得平面的一个法向量为,易知平面的一个法向量为,由求解.【详解】建立如图所示空间直角坐标系:则,所以,设平面的一个法向量为,则,即,令,则,易知平面的一个法向量为,所以,所以平面与平面所成的锐二面角的余弦值为,故选:A5、D【解析】双曲线离心率公式和a、b、c的关系即可求得m,从而得到双曲线的标准方程.【详解】∵双曲线,∴,又,∴,∵离心率为,∴,解得,∴双曲线方程.故选:D.6、C【解析】根据折线图,求出甲乙中位数、平均数及方差、极差,即可判断各选项的正误.【详解】由题图,甲队数据从小到大排序为,乙队数据从小到大排序为,所以甲乙两队的平均数都为5,甲、乙进球中位数相同都为5,A、B错误;甲队方差为,乙队方差为,即,故乙队球员进球水平比甲队稳定,C正确.甲队极差为6,乙队极差为4,故甲队极差比乙队大,D错误.故选:C7、B【解析】以为空间的一个基底,求出空间向量求的夹角即可判断作答.【详解】在四面体OABC中,不共面,则,令,依题意,,设与AC所成角的大小为,则,而,解得,所以与AC所成角的大小为.故选:B8、D【解析】先求得直线的斜率,由此求得倾斜角.【详解】依题意,直线的斜率为,倾斜角的范围为,则倾斜角为.故选:D.9、D【解析】根据抛物线的焦点坐标为可知,抛物线即的焦点坐标为,故选D.考点:抛物线的标准方程及其几何性质.10、A【解析】直线AC、BD与坐标轴重合时求出四边形面积,与坐标轴不重合求出四边形ABCD面积最小值,再比较大小即可作答.【详解】因四边形ABCD的两条对角线互相垂直,由椭圆性质知,四边形ABCD的四个顶点为椭圆顶点时,而,四边形ABCD的面积,当直线AC斜率存在且不0时,设其方程为,由消去y得:,设,则,,直线BD方程为,同理得:,则有,当且仅当,即或时取“=”,而,所以四边形ABCD面积最小值为.故选:A11、B【解析】设D(x,y,z),根据求出D(,,0),再根据CD⊥AB得·=2(-λ)+λ-3(-1-λ)=0,解方程即得λ的值.【详解】设D(x,y,z),则=(x+1,y-1,z-2),=(2,-1,-3),=(1-x,-y,-1-z),∵=2,∴∴∴D(,,0),=(-λ,-λ,-1-λ),∵⊥,∴·=2(-λ)+λ-3(-1-λ)=0,∴λ=-故选:B【点睛】(1)本题主要考查向量的线性运算和空间向量垂直的坐标表示,意在考查学生对这些知识的掌握水平和分析推理能力.(2).12、A【解析】在长方体中建立空间直角坐标系,求出相关点的坐标,进而求得向量,的坐标,利用向量的夹角公式即可求得答案.详解】如图,由题意可知DA,DC,两两垂直,则以D为原点,,的方向分别为x,y,z轴的正方向,建立空间直角坐标系.设,则,,,,,,从而,故异面直线与所成角的余弦值是,故选:A.二、填空题:本题共4小题,每小题5分,共20分。13、2【解析】利用,两边平方后,利用向量数量积计算公式,计算得.【详解】对两边平方并化简得,故.【点睛】本小题主要考查空间向量的加法和减法运算,考查空间向量数量积的表示,属于中档题.14、【解析】将直线与抛物线联立结合抛物线的定义即可求解.【详解】解:直线与抛物线相交于A,B两点设,直线与抛物线联立得:所以所以即解得:所以抛物线C的准线方程为:.故答案为:.15、①.5②.【解析】设,根据题意得到数列是等差数列,求得,得到,利用,结合“累加法”,即可求得.【详解】解:由题意,数列满足,所以当时,,,解得,设,则,且,所以数列是等差数列,公差为,首项为,所以,即,所以,当时,可得,其中也满足,所以数列的通项公式为.故答案为:;.16、【解析】利用垂径定理计算即可.【详解】设圆的半径为,则,得.故答案为:.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1),;(2).【解析】选择①:,利用组合数公式,计算即可;选择②:转化为,计算即可(1)由于共9项,根据二项式系数性质,二项式系数最大的项为第5项和第6项,利用通项公式计算即可;(2)写出展开式的通项,令,即得解【详解】选择①.,即,即,即,解得或(舍去).选择②.,即,解得.(1)展开式中二项式系数最大的项为第5项和第6项,,.(2)展开式的通项为,令,得,所以展开式中常数项为第7项,常数项为.18、.【解析】求得,根据其在上有两个零点,结合零点存在性定理,对参数进行分类讨论,即可求得参数的取值范围.【详解】因为,所以,令,由题意可知在上有两个不同零点.又,若,则,故在上为增函数,这与在上有两个不同零点矛盾,故.当时,,为增函数,当时,,为减函数,故,因为在上有两个不同零点,故,即,即,取,,故在有一个零点,取,,令,,则,故在为减函数,因为,故,故,故在有一个零点,故在上有两个零点,故实数的取值范围为.【点睛】本题考察利用导数由函数的极值点个数求参数的范围,涉及零点存在定理,以及利用导数研究函数单调性,属综合困难题.19、(1);(2).【解析】(1)由焦距为,离心率为结合性质,列出关于的方程组,求出从而求出椭圆方程;(2)设出直线方程,代入椭圆方程,求出点D、E的坐标,然后利用|BD|,|BE|,|DE|成等比数列,即可求解【详解】(1)由已知,,解得,所以椭圆的方程为(2)由(1)得过点的直线为,由,得,所以,所以,依题意,因为,,成等比数列,所以,所以,即,当时,,无解,当时,,解得,所以,解得,所以,当,,成等比数列时,【点睛】方法点睛(1)求椭圆方程的常用方法:①待定系数法;②定义法;③相关点法(2)直线与圆锥曲线的综合问题,常将直线方程代入圆锥曲线方程,从而得到关于(或)的一元二次方程,设出交点坐标),利用韦达定理得出坐标的关系,同时注意判别式大于零求出参数的范围(或者得到关于参数的不等关系),然后将所求转化到参数上来再求解.如本题及,联立即可求解.注意圆锥曲线问题中,常参数多、字母多、运算繁琐,应注意设而不求的思想、整体思想的应用.属于中档题.20、(1);(2)会驶入安全预警区,行驶时长为半小时【解析】(1)先求出A,B的坐标,再由距离公式得出A,B之间的距离;(2)由三点的坐标列出方程组得出经过三点的圆的方程,设轮船航线所在的直线为,再由几何法得出直线与圆截得的弦长,进而得出安全警示区内行驶时长.【小问1详解】由题意得,∴;【小问2详解】设圆的方程为,因为该圆经过三点,∴,得到.所以该圆方程为:,化成标准方程为:.设轮船航线所在的直线为,则直线的方程为:,圆心(6,8)到直线的距离,所以直线与圆相交,即轮船会驶入安全预警区.直线与圆截得的弦长为,行驶时长小时.即在安全警示区内行驶时长为半小时.21、(1)0.25,15;(2)众数为74.5,中位数为72.8,平均分为70.5.【解析】(1)直接利用频率和频数公式求解;(2)利用频率分布直方图的公式求众数、中位数、平均数.【详解】(1)频率=(89.5-79.5)×0.025=0.25;频数=60×0.25=15.(2)[69.5,79.5)一组的频率最大,人数最多,则众数为74.5,左边三个矩形的面积和为0.4,左边四个矩形的面积和为0.7,所以中位数在第4个矩形中,设中位数为,所以中位数为72.8.平均分为44.5×0.1+54.5×0.15+64.5×0.15+74.5×0.3+84.5×0.25+94.5×0.05=70.522、(1);(2)存在,.【解析】(1)根据给定条件求出椭圆长短半轴长即可代入计算作答.(2)当直线l的斜

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论