




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
福建省莆田四中、莆田六中2022-2023学年高三3月月考试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.设双曲线的右顶点为,右焦点为,过点作平行的一条渐近线的直线与交于点,则的面积为()A. B. C.5 D.62.在中,为上异于,的任一点,为的中点,若,则等于()A. B. C. D.3.某校团委对“学生性别与中学生追星是否有关”作了一次调查,利用列联表,由计算得,参照下表:0.010.050.0250.0100.0050.0012.7063.8415.0246.6357.87910.828得到正确结论是()A.有99%以上的把握认为“学生性别与中学生追星无关”B.有99%以上的把握认为“学生性别与中学生追星有关”C.在犯错误的概率不超过0.5%的前提下,认为“学生性别与中学生追星无关”D.在犯错误的概率不超过0.5%的前提下,认为“学生性别与中学生追星有关”4.已知双曲线的渐近线方程为,且其右焦点为,则双曲线的方程为()A. B. C. D.5.已知双曲线的左焦点为,直线经过点且与双曲线的一条渐近线垂直,直线与双曲线的左支交于不同的两点,,若,则该双曲线的离心率为().A. B. C. D.6.设,则““是“”的()A.充分而不必要条件 B.必要而不充分条件C.充要条件 D.既不充分也不必条件7.如图,平面ABCD,ABCD为正方形,且,E,F分别是线段PA,CD的中点,则异面直线EF与BD所成角的余弦值为()A. B. C. D.8.已知,若则实数的取值范围是()A. B. C. D.9.已知等差数列的公差为-2,前项和为,若,,为某三角形的三边长,且该三角形有一个内角为,则的最大值为()A.5 B.11 C.20 D.2510.在直角坐标系中,已知A(1,0),B(4,0),若直线x+my﹣1=0上存在点P,使得|PA|=2|PB|,则正实数m的最小值是()A. B.3 C. D.11.某工厂一年中各月份的收入、支出情况的统计如图所示,下列说法中错误的是().A.收入最高值与收入最低值的比是B.结余最高的月份是月份C.与月份的收入的变化率与至月份的收入的变化率相同D.前个月的平均收入为万元12.已知抛物线:,点为上一点,过点作轴于点,又知点,则的最小值为()A. B. C.3 D.5二、填空题:本题共4小题,每小题5分,共20分。13.已知复数满足(为虚数单位),则复数的实部为____________.14.假设10公里长跑,甲跑出优秀的概率为,乙跑出优秀的概率为,丙跑出优秀的概率为,则甲、乙、丙三人同时参加10公里长跑,刚好有2人跑出优秀的概率为________.15.已知一个正四棱锥的侧棱与底面所成的角为,侧面积为,则该棱锥的体积为__________.16.已知全集为R,集合,则___________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)某地在每周六的晚上8点到10点半举行灯光展,灯光展涉及到10000盏灯,每盏灯在某一时刻亮灯的概率均为,并且是否亮灯彼此相互独立.现统计了其中100盏灯在一场灯光展中亮灯的时长(单位:),得到下面的频数表:亮灯时长/频数1020402010以样本中100盏灯的平均亮灯时长作为一盏灯的亮灯时长.(1)试估计的值;(2)设表示这10000盏灯在某一时刻亮灯的数目.①求的数学期望和方差;②若随机变量满足,则认为.假设当时,灯光展处于最佳灯光亮度.试由此估计,在一场灯光展中,处于最佳灯光亮度的时长(结果保留为整数).附:①某盏灯在某一时刻亮灯的概率等于亮灯时长与灯光展总时长的商;②若,则,,.18.(12分)设,(1)求的单调区间;(2)设恒成立,求实数的取值范围.19.(12分)已知函数.当时,求不等式的解集;,,求a的取值范围.20.(12分)已知椭圆过点,设椭圆的上顶点为,右顶点和右焦点分别为,,且.(1)求椭圆的标准方程;(2)设直线交椭圆于,两点,设直线与直线的斜率分别为,,若,试判断直线是否过定点?若过定点,求出该定点的坐标;若不过定点,请说明理由.21.(12分)已知函数f(x)=x(1)讨论fx(2)当x≥-1时,fx+a22.(10分)已知椭圆的焦距是,点是椭圆上一动点,点是椭圆上关于原点对称的两点(与不同),若直线的斜率之积为.(Ⅰ)求椭圆的标准方程;(Ⅱ)是抛物线上两点,且处的切线相互垂直,直线与椭圆相交于两点,求的面积的最大值.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】
根据双曲线的标准方程求出右顶点、右焦点的坐标,再求出过点与的一条渐近线的平行的直线方程,通过解方程组求出点的坐标,最后利用三角形的面积公式进行求解即可.【详解】由双曲线的标准方程可知中:,因此右顶点的坐标为,右焦点的坐标为,双曲线的渐近线方程为:,根据双曲线和渐近线的对称性不妨设点作平行的一条渐近线的直线与交于点,所以直线的斜率为,因此直线方程为:,因此点的坐标是方程组:的解,解得方程组的解为:,即,所以的面积为:.故选:A【点睛】本题考查了双曲线的渐近线方程的应用,考查了两直线平行的性质,考查了数学运算能力.2、A【解析】
根据题意,用表示出与,求出的值即可.【详解】解:根据题意,设,则,又,,,故选:A.【点睛】本题主要考查了平面向量基本定理的应用,关键是要找到一组合适的基底表示向量,是基础题.3、B【解析】
通过与表中的数据6.635的比较,可以得出正确的选项.【详解】解:,可得有99%以上的把握认为“学生性别与中学生追星有关”,故选B.【点睛】本题考查了独立性检验的应用问题,属于基础题.4、B【解析】试题分析:由题意得,,所以,,所求双曲线方程为.考点:双曲线方程.5、A【解析】
直线的方程为,令和双曲线方程联立,再由得到两交点坐标纵坐标关系进行求解即可.【详解】由题意可知直线的方程为,不妨设.则,且将代入双曲线方程中,得到设则由,可得,故则,解得则所以双曲线离心率故选:A【点睛】此题考查双曲线和直线相交问题,联立直线和双曲线方程得到两交点坐标关系和已知条件即可求解,属于一般性题目.6、B【解析】
解出两个不等式的解集,根据充分条件和必要条件的定义,即可得到本题答案.【详解】由,得,又由,得,因为集合,所以“”是“”的必要不充分条件.故选:B【点睛】本题主要考查必要不充分条件的判断,其中涉及到绝对值不等式和一元二次不等式的解法.7、C【解析】
分别以AB,AD,AP所在直线为x轴,y轴,轴,建立如图所示的空间直角坐标系,再利用向量法求异面直线EF与BD所成角的余弦值.【详解】由题可知,分别以AB,AD,AP所在直线为x轴,y轴,轴,建立如图所示的空间直角坐标系.设.则.故异面直线EF与BD所成角的余弦值为.故选:C【点睛】本题主要考查空间向量和异面直线所成的角的向量求法,意在考查学生对这些知识的理解掌握水平.8、C【解析】
根据,得到有解,则,得,,得到,再根据,有,即,可化为,根据,则的解集包含求解,【详解】因为,所以有解,即有解,所以,得,,所以,又因为,所以,即,可化为,因为,所以的解集包含,所以或,解得,故选:C【点睛】本题主要考查一元二次不等式的解法及集合的关系的应用,还考查了运算求解的能力,属于中档题,9、D【解析】
由公差d=-2可知数列单调递减,再由余弦定理结合通项可求得首项,即可求出前n项和,从而得到最值.【详解】等差数列的公差为-2,可知数列单调递减,则,,中最大,最小,又,,为三角形的三边长,且最大内角为,由余弦定理得,设首项为,即得,所以或,又即,舍去,,d=-2前项和.故的最大值为.故选:D【点睛】本题考查等差数列的通项公式和前n项和公式的应用,考查求前n项和的最值问题,同时还考查了余弦定理的应用.10、D【解析】
设点,由,得关于的方程.由题意,该方程有解,则,求出正实数m的取值范围,即求正实数m的最小值.【详解】由题意,设点.,即,整理得,则,解得或..故选:.【点睛】本题考查直线与方程,考查平面内两点间距离公式,属于中档题.11、D【解析】由图可知,收入最高值为万元,收入最低值为万元,其比是,故项正确;结余最高为月份,为,故项正确;至月份的收入的变化率为至月份的收入的变化率相同,故项正确;前个月的平均收入为万元,故项错误.综上,故选.12、C【解析】
由,再运用三点共线时和最小,即可求解.【详解】.故选:C【点睛】本题考查抛物线的定义,合理转化是本题的关键,注意抛物线的性质的灵活运用,属于中档题.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】
利用复数的概念与复数的除法运算计算即可得到答案.【详解】,所以复数的实部为2.故答案为:2【点睛】本题考查复数的除法运算,考查学生的基本计算能力,是一道基础题.14、【解析】
分跑出优秀的人为:甲、乙和甲、丙和乙、丙三种情况分别计算再求和即可.【详解】刚好有2人跑出优秀有三种情况:其一是只有甲、乙两人跑出优秀的概率为;其二是只有甲、丙两人跑出优秀的概率为;其三是只有乙、丙两人跑出优秀的概率为,三种情况相加得.即刚好有2人跑出优秀的概率为.故答案为:【点睛】本题主要考查了分类方法求解事件概率的问题,属于基础题.15、【解析】
如图所示,正四棱锥,为底面的中心,点为的中点,则,设,根据正四棱锥的侧面积求出的值,再利用勾股定理求得正四棱锥的高,代入体积公式,即可得到答案.【详解】如图所示,正四棱锥,为底面的中心,点为的中点,则,设,,,,,,.故答案为:.【点睛】本题考查棱锥的侧面积和体积,考查函数与方程思想、转化与化归思想,考查运算求解能力.16、【解析】
先化简集合A,再求A∪B得解.【详解】由题得A={0,1},所以A∪B={-1,0,1}.故答案为{-1,0,1}【点睛】本题主要考查集合的化简和并集运算,意在考查学生对这些知识的理解掌握水平和分析推理能力.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)①,,②72【解析】
(1)将每组数据的组中值乘以对应的频率,然后再将结果相加即可得到亮灯时长的平均数,将此平均数除以(个小时),即可得到的估计值;(2)①利用二项分布的均值与方差的计算公式进行求解;②先根据条件计算出的取值范围,然后根据并结合正态分布概率的对称性,求解出在满足取值范围下对应的概率.【详解】(1)平均时间为(分钟)∴(2)①∵,∴,②∵,,∴∵,,∴∴即最佳时间长度为72分钟.【点睛】本题考查根据频数分布表求解平均数、几何概型(长度模型)、二项分布的均值与方差、正态分布的概率计算,属于综合性问题,难度一般.(1)如果,则;(2)计算正态分布中的概率,一定要活用正态分布图象的对称性对应概率的对称性.18、(1)单调递增区间为,单调递减区间为;(2)【解析】
(1),令,解不等式即可;(2),令得,即,且的最小值为,令,结合即可解决.【详解】(1),当时,,递增,当时,,递减.故的单调递增区间为,单调递减区间为.(2),,,设的根为,即有可得,,当时,,递减,当时,,递增.,所以,①当;②当时,设,递增,,所以.综上,.【点睛】本题考查了利用导数研究函数单调性以及函数恒成立问题,这里要强调一点,处理恒成立问题时,通常是构造函数,将问题转化为函数的极值或最值来处理.19、(1);(2).【解析】
(1)当时,,①当时,,令,即,解得,②当时,,显然成立,所以,③当时,,令,即,解得,综上所述,不等式的解集为.(2)因为,因为,有成立,所以只需,解得,所以a的取值范围为.【点睛】绝对值不等式的解法:法一:利用绝对值不等式的几何意义求解,体现了数形结合的思想;法二:利用“零点分段法”求解,体现了分类讨论的思想;法三:通过构造函数,利用函数的图象求解,体现了函数与方程的思想.20、(1)(2)直线过定点,该定点的坐标为.【解析】
(1)因为椭圆过点,所以①,设为坐标原点,因为,所以,又,所以②,将①②联立解得(负值舍去),所以椭圆的标准方程为.(2)由(1)可知,设,.将代入,消去可得,则,,,所以,所以,此时,所以,此时直线的方程为,即,令,可得,所以直线过定点,该定点的坐标为.21、(1)见解析;(2)-∞,1【解析】
(1)f′(x)=(x+1)ex-ax-a=(x+1)(ex-a).对a分类讨论,即可得出单调性.
(2)由xex-ax-a+1≥0,可得a(x+1)≤xex+1,当x=-1时,0≤-1e+1恒成立.当x>-1时,a≤xe【详解】解法一:(1)f①当a≤0时,x(-∞-1(-1,+∞)f-0+f(x)↘极小值↗所以f(x)在(-∞,-1)上单调递减,在(-1,+∞)单调递增.②当a>0时,f'(x)=0的根为x=ln若lna>-1,即a>x(-∞,-1)-1(-1,ln(f+0-0+f(x)↗极大值↘极小值↗所以f(x)在(-∞,-1),(lna,+∞)上单调递增,在若lna=-1,即a=f'(x)≥0在(-∞,+∞)上恒成立,所以f(x)在若lna<-1,即0<a<x(-∞,ln(-1(-1,+∞)f+0-0+f(x)↗极大值↘极小值↗所以f(x)在(-∞,lna),(-1,+∞)上单调递增,在综上:当a≤0时,f(x)在(-∞,-1)上单调递减,在(-1,+∞)上单调递增;当0<a<1e时,f(x)在(-∞,lna),自a=1e时,f(x)在当a>1e时,f(x)在(-∞,-1),(ln(2)因为xex-ax-a+1≥0当x=-1时,0≤-1当x>-1时,a≤x令g(x)=xex设h(
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 药理学中的实验技术试题及答案
- 二手车评估与行业发展趋势试题及答案
- 统计学推断方法试题及答案咨询
- 2024年二手车金融服务的创新试题及答案
- 美容师行为规范考核试题及答案
- 宠物食品热量计算方法试题及答案
- 湖北省孝感市汉川市2022-2023学年三年级下学期英语期中试卷(含答案)
- 汽车维修工电子燃油喷射系统试题及答案
- 临床药物历史案例分析试题及答案
- 2024年美容行业的影响因素试题及答案
- 2024年浙江省嘉兴市中考三模语文试卷
- 信访工作条例应知应会考试题库300题(含答案)
- JJG 927-2013轮胎压力表检定规程
- 2022教学能力大赛《智能网联汽车传感器测试与装调》实施报告
- 商务会客厅项目策划书
- 加油机维修保养记录表
- 新视野大学英语(第四版)读写教程4(思政智慧版)课件 Unit1 Urban development Section A
- 23秋国家开放大学《民法学(2)》形考任务1-4参考答案
- 食物中毒病历书写范本
- 中老年常见病预防保健知识讲座课件
- 2023汽车高压电线束技术条件
评论
0/150
提交评论