江苏省常州市戚墅堰中学2024届数学高二上期末学业质量监测模拟试题含解析_第1页
江苏省常州市戚墅堰中学2024届数学高二上期末学业质量监测模拟试题含解析_第2页
江苏省常州市戚墅堰中学2024届数学高二上期末学业质量监测模拟试题含解析_第3页
江苏省常州市戚墅堰中学2024届数学高二上期末学业质量监测模拟试题含解析_第4页
江苏省常州市戚墅堰中学2024届数学高二上期末学业质量监测模拟试题含解析_第5页
已阅读5页,还剩14页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

江苏省常州市戚墅堰中学2024届数学高二上期末学业质量监测模拟试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.等差数列中,,则前项的和()A. B.C. D.2.下列说法:①将一组数据中的每个数据都加上或减去同一个常数后,方差不变;②从统计量中得知有的把握认为吸烟与患肺病有关系,是指有的可能性使得推断出现错误;③回归直线就是散点图中经过样本数据点最多的那条直线;④如果两个变量的线性相关程度越高,则线性相关系数就越接近于;其中错误说法的个数是()A. B.C. D.3.已知点、为椭圆的左、右焦点,若点为椭圆上一动点,则使得的点的个数为()A. B.C. D.不能确定4.过双曲线的右焦点F作一条渐近线的垂线,垂足为M,且FM的中点A在双曲线上,则双曲线离心率e等于()A. B.C. D.5.函数在其定义域内可导,的图象如图所示,则导函数的图象为A. B.C. D.6.“”是“方程表示椭圆”的()A.充分不必要条件 B.必要不充分条件C.充分必要条件 D.既不充分也不必要条件7.已知集合A=()A. B.C.或 D.8.已知函数,其中e是自然数对数的底数,若,则实数a的取值范围是A. B.C. D.9.已知,是双曲线C:(,)的两个焦点,过点与x轴垂直的直线与双曲线C交于A、B两点,若是等腰直角三角形,则双曲线C的离心率为()A. B.C. D.10.俗话说“好货不便宜,便宜没好货”,依此判断,“不便宜”是“好货”的()A.必要不充分条件 B.充分不必要条件C.充要条件 D.既不充分也不必要条件11.过点且平行于直线的直线方程为()A. B.C. D.12.双曲线的光学性质为:如图①,从双曲线右焦点发出的光线经双曲线镜面反射,反射光线的反向延长线经过左焦点.我国首先研制成功的“双曲线新闻灯”,就是利用了双曲线的这个光学性质.某“双曲线新闻灯”的轴截面是双曲线的一部分,如图②,其方程为,为其左、右焦点,若从右焦点发出的光线经双曲线上的点和点反射后,满足,,则该双曲线的离心率为()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.直线l过抛物线的焦点F,且l与该抛物线交于不同的两点,.若,则弦AB的长是____14.已知抛物线的焦点为,定点,若直线与抛物线相交于、两点(点在、中间),且与抛物线的准线交于点,若,则的长为______.15.传说古希腊毕达哥拉斯学派的数学家用沙粒和小石子来研究数.他们根据沙粒或小石子所排列的形状把数分成许多类,下图中第一行的称为三角形数,第二行的称为五边形数,则三角形数的第10项为__________,五边形数的第项为__________.16.已知等差数列公差不为0,且,,等比数列,则_________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)在下列所给的三个条件中任选一个,补充在下面的问题中,并加以解答①过(-1,2);②与直线平行;③与直线垂直问题:已知直线过点M(3,5),且______(1)求的方程;(2)若与圆相交于点A、B,求弦AB的长18.(12分)已知函数在处取得极值(1)求实数a的值;(2)若函数在内有零点,求实数b的取值范围19.(12分)已知抛物线的焦点为,抛物线上的点的横坐标为1,且.(1)求抛物线的方程;(2)过焦点作两条相互垂直的直线(斜率均存在),分别与抛物线交于、和、四点,求四边形面积的最小值.20.(12分)已知双曲线:的两条渐近线所成的锐角为且点是上一点(1)求双曲线的标准方程;(2)若过点的直线与交于,两点,点能否为线段的中点?并说明理由21.(12分)已知函数(a是常数).(1)当时,求的单调区间与极值;(2)若,求a的取值范围.22.(10分)如图在直三棱柱中,为的中点,为的中点,是中点,是与的交点,是与的交点.(1)求证:;(2)求证:平面;(3)求直线与平面的距离.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】利用等差数列下标和性质可求得,根据等差数列求和公式可求得结果.【详解】数列为等差数列,,解得:;.故选:D.2、C【解析】根据统计的概念逐一判断即可.【详解】对于①,方差反映一组数据的波动大小,将一组数据中的每个数据都加上或减去同一个常数后,方差不变,①正确;对于②从统计量中得知有的把握认为吸烟与患肺病有关系,是指有的可能性使得推断出现错误;故②正确;对于③,线性回归方程必过样本中心点,回归直线不一定就是散点图中经过样本数据点最多的那条直线,也可能不过任何一个点;③不正确;对于④,如果两个变量的线性相关程度越高,则线性相关系数就越接近于,不正确,应为相关系数的绝对值就越接近于;综上,其中错误的个数是;故选:C.3、B【解析】利用余弦定理结合椭圆的定义可求得、,即可得出结论.【详解】在椭圆中,,,,则,,可得,所以,,解得,此时点位于椭圆短轴的顶点.因此,满足条件的点的个数为.故选:B.4、A【解析】根据题意可表示出渐近线方程,进而可知的斜率,表示出直线方程,求出的坐标进而求得A点坐标,代入双曲线方程整理求得和的关系式,进而求得离心率【详解】:由题意设相应的渐近线:,则根据直线的斜率为,则的方程为,联立双曲线渐近线方程求出,则,,则的中点,把中点坐标代入双曲线方程中,即,整理得,即,求得,即离心率为,故答案为:5、D【解析】分析:根据函数单调性、极值与导数的关系即可得到结论.详解:观察函数图象,从左到右单调性先单调递增,然后单调递减,最后单调递增.对应的导数符号为正,负,正.,选项D的图象正确.故选D.点睛:本题主要考查函数图象的识别和判断,函数单调性与导数符号的对应关系是解题关键.6、B【解析】根据方程表示椭圆,且2,再判断必要不充分条件即可.【详解】解:方程表示椭圆满足,解得,且2所以“”是“方程表示椭圆”的必要不充分条件.故选:B7、A【解析】先求出集合,再根据集合的交集运算,即可求出结果.【详解】因为集合,所以.故选:A.8、B【解析】利用函数的奇偶性将函数转化为f(M)≤f(N)的形式,再利用单调性脱去对应法则f,转化为一般的二次不等式求解即可【详解】由于,,则f(﹣x)=﹣x3+e﹣x﹣ex=﹣f(x),故函数f(x)为奇函数故原不等式f(a﹣1)+f(2a2)≤0,可转化为f(2a2)≤﹣f(a﹣1)=f(1﹣a),即f(2a2)≤f(1﹣a);又f'(x)=3x2﹣cosx+ex+e﹣x,由于ex+e﹣x≥2,故ex+e﹣x﹣cosx>0,所以f'(x)=3x2﹣cosx+ex+e﹣x≥0恒成立,故函数f(x)单调递增,则由f(2a2)≤f(1﹣a)可得,2a2≤1﹣a,即2a2+a﹣1≤0,解得,故选B【点睛】本题考查了函数的奇偶性和单调性的判定及应用,考查了不等式的解法,属于中档题9、B【解析】根据等腰直角三角形的性质,结合双曲线的离心率公式进行求解即可.【详解】由题意不妨设,,当时,由,不妨设,因为是等腰直角三角形,所以有,或舍去,故选:B10、A【解析】将“好货”与“不便宜”进行相互推理即可求得答案.【详解】根据题意,“好货”一定“不便宜”,但是“不便宜”不一定是“好货”,所以“不便宜”是“好货”的必要不充分条件.故选:A.11、A【解析】设直线的方程为,代入点的坐标即得解.【详解】解:设直线的方程为,把点坐标代入直线方程得.所以所求的直线方程为.故选:A12、C【解析】连接,已知条件为,,设,由双曲线定义表示出,用已知正切值求出,再由双曲线定义得,这样可由勾股定理求出(用表示),然后在中,应用勾股定理得出的关系,求得离心率【详解】易知共线,共线,如图,设,,则,由得,,又,所以,,所以,所以,由得,因为,故解得,则,在中,,即,所以故选:C二、填空题:本题共4小题,每小题5分,共20分。13、4【解析】由题意得,再结合抛物线的定义即可求解.【详解】由题意得,由抛物线的定义知:,故答案为:4.14、【解析】分别过点、作、垂直于抛物线的准线于、,则,求出直线的方程,可求得抛物线的焦点的坐标,可得出抛物线的标准方程,再将直线的方程与抛物线的方程联立,求出点的纵坐标,利用抛物线的定义可求得线段的长.【详解】如图,分别过点、作、垂直于抛物线的准线于、,则,由得,所以,,又,所以,直线的方程为,所以,,则,则抛物线的方程为,设点的纵坐标为,由,得或,因为点在、之间,则,所以,.故答案为:.15、①.②.【解析】对于三角形数,根据图形寻找前后之间的关系,从而归纳出规律利用求和公式即得,对于五边形数根据图形寻找前后之间的关系,然后利用累加法可得通项公式.【详解】由题可知三角形数的第1项为1,第2项为3=1+2,第3项为6=1+2+3,第4项为10=1+2+3+4,,因此,第10项为;五边形数的第1项为,第2项为,第3项为,第4项为,…,因此,,所以当时,,当时也适合,故,即五边形数的第项为.故答案为:55;.16、【解析】设等差数列的公差为,由,,等比数列,可得,则的值可求【详解】解:设等差数列的公差为,,,等比数列,,则,得,故答案为:三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)【解析】(1)可依次根据直线方程的点斜式、“两直线平行,斜率相等”、“两直线垂直,斜率相乘为-1”求直线l的方程;(2)利用垂径定理即可求圆的弦长.【小问1详解】选条件①:∵直线过点(3,5)及(-1,2),∴直线的斜率为,依题意,直线的方程为,即;选条件②:∵直线的斜率为,直线与直线平行,∴直线的斜率为,依题意,直线的方程为;即;选条件③:∵直线的斜率为,直线与直线垂直,∴直线的斜率为,依题意,直线的方程为,即;【小问2详解】圆心为(2,3),半径为2,圆心到直线的距离为∴18、(1);(2)【解析】(1)由题意可得,从而可求出a的值;(2)先对函数求导,求得函数的单调区间,从而可由函数的变化情况可知,要函数在内有零点,只要函数在内的最大值大于等于零,最小值小于等于零,然后解不等式组可得答案【详解】解:(1)在处取得极值,∴,∴.经验证时,在处取得极值(2)由(1)知,∴极值点为2,.将x,,在内的取值列表如下:x024/-0+/b极小值由此可得,在内有零点,只需∴19、(1)(2)2【解析】(1)根据抛物线的定义求出,即可得到抛物线方程;(2)设直线的方程为:,、,则直线的方程为:,联立直线与抛物线方程,消元、列出韦达定理,再根据弦长公式表示出,同理可得,则四边形的面积,最后利用基本不等式计算可得;【小问1详解】解:由已知知:,解得,故抛物线的方程为:.【小问2详解】解:由(1)知:,设直线方程为:,、,则直线的方程为:,联立得,则,所以,,∴,同理可得,∴四边形的面积,当且仅当,即时等号成立,∴四边形面积的最小值为2.20、(1);(2)点不能为线段的中点,理由见解析.【解析】(1)由渐近线夹角求得一个斜率,再代入点的坐标,然后可解得得双曲线方程;(2)设直线方程为(斜率不存在时另说明),与双曲线方程联立,消元后应用韦达定理,结合中点坐标公式求得,然后难验证直线与双曲线是否相交即可得【详解】解:(1)由题意知,双曲线的渐近线的倾斜角为30°或60°,即或当时,的标准方程为,代入,无解当时,的标准方程为,代入,解得故的标准方程为(2)不能是线段的中点设交点,,当直线的斜率不存在时,直线与双曲线只有一个交点,不符合题意.当直线的斜率存在时,设直线方程为,联立方程组,整理得,则,由得,将代入判别式,所以满足题意的直线也不存在所以点不能为线段的中点21、(1)函数在上单调递增,在上单调递减,极小值是,无极大值.(2)【解析】(1)由当,得到,求导,再由,求解;(2)将,转化为成立,令,求其最大值即可.【小问1详解】解:当时,,定义域为,所以,当时,,当时,,所以函数在上单调递增,在上单调递减,所以时,取得极小值是,无极大值.【小问2详解】因为,即成立.设,则,当时,,当时,,所以在上单调递增,在上单调递减,所以,所以,即.22、(1)证明见解析(2)证明见解析(3)【解析】(1)法一:通过建立空间直角坐标系,运用向量数量积证明,法二:通过线面垂直证明,法三:根据三垂线证明;(2)法一:通过建立空间直角坐标系,运用向量数量积证明,法二:通过面面平行证明线面平行;(3)法一:通过建立空间直角坐标系,运用向量方法求解,法二:运用等体积法求解.【小问1详解】证明:法一:在直三棱柱中,因为,以点为坐标原点,方向分别为轴正方向建立如图所示空间直角坐标系.因为,所以,所以所以,所以.法二:连接,在直三棱柱中,有面,面,所以,又,则,因为,所以面因为面,所以因为,所以四边形为正方形,所以因为,所以面因为面,所以.法三:用三垂线定理证明:连接,在直三棱柱中,有面因为面,所以,又,则,因为,所以面所以在平面内的射影为,因为四边形为正方形,所以,因此根据三垂线定理可知【小问2详解】证明:法一:因为为的中点,为的中点,为中点,是与的交点,所以、,依题意可知为重心,则,可得所以,,设为平面的法向量,则即取得则平面的一个

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论