版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
江功省睢宁县第一中学北校2023-2024学年高二上数学期末联考模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.椭圆的离心率为()A. B.C. D.2.某学生2021年共参加10次数学竞赛模拟考试,成绩分别记为,,,…,,为研究该生成绩的起伏变化程度,选用一下哪个数字特征最为合适()A.,,,…,的平均值; B.,,,…,的标准差;C.,,,…,的中位数; D.,,,…,的众数;3.过抛物线C:的准线上任意一点作抛物线的切线,切点为,若在轴上存在定点,使得恒成立,则点的坐标为()A. B.C. D.4.已知直线和平面,且在上,不在上,则下列判断错误的是()A.若,则存在无数条直线,使得B.若,则存在无数条直线,使得C.若存在无数条直线,使得,则D.若存在无数条直线,使得,则5.以下说法:①将一组数据中的每一个数据都加上或减去同一个常数后,方差不变;②设有一个回归方程,变量增加1个单位时,平均增加5个单位③线性回归方程必过④设具有相关关系的两个变量的相关系数为,那么越接近于0,之间的线性相关程度越高;⑤在一个列联表中,由计算得的值,那么的值越大,判断两个变量间有关联的把握就越大。其中错误的个数是()A.0 B.1C.2 D.36.已知各项均为正数且单调递减的等比数列满足、、成等差数列.其前项和为,且,则()A. B.C. D.7.已知数列的前n项和为,且对任意正整数n都有,若,则()A.2019 B.2020C.2021 D.20228.执行如图所示的程序框图,若输出的的值为,则判断框中应填入()A.? B.?C.? D.?9.命题;命题.则A.“或”为假 B.“且”为真C.真假 D.假真10.命题“若,则”的否命题是()A.若,则 B.若,则C.若,则 D.若,则11.设为数列的前n项和,,且满足,若,则()A.2 B.3C.4 D.512.从装有2个红球和2个白球的袋内任取2个球,那么互斥而不对立的两个事件是()A.取出的球至少有1个红球;取出的球都是红球B.取出的球恰有1个红球;取出的球恰有1个白球C.取出的球至少有1个红球;取出的球都是白球D.取出的球恰有1个白球;取出的球恰有2个白球二、填空题:本题共4小题,每小题5分,共20分。13.已知数列则是这个数列的第________项.14.唐代诗人李颀的诗《古从军行》开头两句说:“白日登山望烽火,黄昏饮马傍交河.”诗中隐含着一个有趣的数学问题——“将军饮马”,即将军在观望烽火之后从山脚下某处出发,先到河边饮马再回到军营,怎样走才能使总路程最短?在如图所示的直角坐标系xOy中,设军营所在平面区域为{(x,y)|x2+y2≤},河岸线所在直线方程为x+2y-4=0.假定将军从点P(,)处出发,只要到达军营所在区域即回到军营,当将军选择最短路程时,饮马点A的纵坐标为______.最短总路程为______15.已知数列满足,记,则______;数列的通项公式为______.16.已知数列是公差不为零的等差数列,,,成等比数列,第1,2项与第10,11项的和为68,则数列的通项公式是________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知椭圆的焦距为4,其短轴的两个端点与长轴的一个端点构成正三角形.(1)求椭圆C的标准方程;(2)设斜率为k的直线与椭圆C交于两点,O为坐标原点,若的面积为定值,判断是否为定值,如果是,求出该定值;如果不是,说明理由.18.(12分)如图,正三棱柱中,D是的中点,.(1)求点C到平面的距离;(2)试判断与平面的位置关系,并证明你的结论.19.(12分)已知椭圆的离心率是,且过点.直线与椭圆相交于两点.(Ⅰ)求椭圆的方程;(Ⅱ)求的面积的最大值;(Ⅲ)设直线,分别与轴交于点,.判断,大小关系,并加以证明.20.(12分)如图,三棱柱的所有棱长都是,平面,为的中点,为的中点(1)证明:直线平面;(2)求平面与平面夹角的余弦值21.(12分)如图,水平桌面上放置一个棱长为4的正方体的水槽,水面高度恰为正方体棱长的一半,在该正方体侧面有一个小孔(小孔的大小忽略不计)E,E点到CD的距离为3,若该正方体水槽绕CD倾斜(CD始终在桌面上).(1)证明图2中的水面也是平行四边形;(2)当水恰好流出时,侧面与桌面所成的角的大小.22.(10分)已知数列,,其中,是各项均为正数的等比数列,满足,,且(1)求数列,的通项公式;(2)设,求数列的前n项和
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】由椭圆标准方程求得,再计算出后可得离心率【详解】在椭圆中,,,,因此,该椭圆的离心率为.故选:A.【点睛】本题考查求椭圆的离心率,根据椭圆标准方程求出即可2、B【解析】根据平均数、标准差、中位数及众数的概念即得.【详解】根据平均数、中位数、众数的概念可知,平均数、中位数、众数描述数据的集中趋势,标准差描述数据的波动大小估计数据的稳定程度.故选:B.3、D【解析】设切点,点,联立直线的方程和抛物线C的准线方程可得,将问题转化为对任意点恒成立,可得,解出,从而求出答案【详解】设切点,点由题意,抛物线C的准线,且由,得,则直线的方程为,即,联立令,得由题意知,对任意点恒成立,也就是对任意点恒成立因为,,则,即对任意实数恒成立,所以,即,所以,故选:D【点睛】一般表示抛物线的切线方程时可将抛物线方程转化为函数解析式,可利用导数的几何意义求解切线斜率,再代入计算.4、D【解析】根据直线和直线,直线和平面的位置关系依次判断每一个选项得到答案.【详解】若,则平行于过的平面与的交线,当时,,则存在无数条直线,使得,A正确;若,垂直于平面中的所有直线,则存在无数条直线,使得,B正确;若存在无数条直线,使得,,,则,C正确;当时,存在无数条直线,使得,D错误.故选:D.5、C【详解】方差反映一组数据的波动大小,将一组数据中的每个数据都加上或减去同一个常数后,方差不变,故①正确;一个回归方程,变量增加1个单位时,平均减少5个单位,故②不正确;线性回归方程必过样本中心点,故③正确;根据线性回归分析中相关系数的定义:在线性回归分析中,相关系数为r,越接近于1,相关程度越大,故④不正确;对于观察值来说,越大,“x与y有关系”的可信程度越大,故⑤正确.故选:C【点睛】本题主要考查用样本估计总体、线性回归方程、独立性检验的基本思想.6、C【解析】先根据,,成等差数列以及单调递减,求出公比,再由即可求出,再根据等比数列通项公式以及前项和公式即可求出.【详解】解:由,,成等差数列,得:,设的公比为,则,解得:或,又单调递减,,,解得:,数列的通项公式为:,.故选:C7、C【解析】先令代入中,求得,再根据递推式得到,将与已知相减,可判断数列是等比数列,进而确定,求得答案.【详解】因为,令,则,又,故,即,故数列是等比数列,则,所以,所以,故选:C.8、C【解析】本题为计算前项和,模拟程序,实际计算求和即可得到的值.【详解】由题意可知:输出的的值为数列的前项和.易知,则,令,解得.即前7项的和.为故判断框中应填入“?”.故选:C.9、D【解析】命题:可能为0,不为0,假命题,命题:,为真命题,所以“或”为真命题,“且”为假命题.选D.10、B【解析】根据原命题的否命题是条件结论都要否定【详解】解:因为原命题的否命题是条件结论都要否定所以命题“若,则”的否命题是若,则;故选:B11、B【解析】由已知条件可得数列为首项为2,公差为2的等差数列,然后根据结合等差数列的求和公式可求得答案【详解】在等式中,令,可得,所以数列为首项为2,公差为2的等差数列,因为,所以,化简得,,解得或(舍去),故选:B12、D【解析】利用互斥事件、对立事件的定义逐一判断即可.【详解】A答案中的两个事件可以同时发生,不是互斥事件B答案中的两个事件可以同时发生,不是互斥事件C答案中的两个事件不能同时发生,但必有一个发生,既是互斥事件又是对立事件D答案中的两个事件不能同时发生,也可以都不发生,故是互斥而不对立事件故选:D【点睛】本题考查的是互斥事件和对立事件的概念,较简单.二、填空题:本题共4小题,每小题5分,共20分。13、12【解析】根据被开方数的特点求出数列的通项公式,最后利用通项公式进行求解即可.【详解】数列中每一项被开方数分别为:6,10,14,18,22,…,因此这些被开方数是以6为首项,4为公差的等差数列,设该等差数列为,其通项公式为:,设数列为,所以,于是有,故答案为:14、①.②.【解析】求出P(,)关于直线x+2y4=0对称点P'的坐标,再求出线段OP'与直线x+2y-4=0的交点A,再利用圆的几何性质可得结果.【详解】设P(,)关于直线x+2y4=0的对称点为P'(m,n),则解得因为从点P到军营总路程最短,所以A为线段OP'与直线x+2y4=0的交点,联立得y=(42y),解得y=.所以“将军饮马”的最短总路程为=,故答案为,.【点睛】本题主要考查对称问题以及圆的几何性质,属于中档题.解析几何中点对称问题,主要有以下三种题型:(1)点关于直线对称,关于直线的对称点,利用,且点在对称轴上,列方程组求解即可;(2)直线关于直线对称,利用已知直线与对称轴的交点以及直线上特殊点的对称点(利用(1)求解),两点式求对称直线方程;(3)曲线关于直线对称,结合方法(1)利用逆代法求解.15、①.②..【解析】结合递推公式计算出,即可求出的值;证得数列是以3为首项,2为公比的等比数列,即可求出结果.【详解】因为,所以,,,因此,由于,又,即,所以,因此数列是以3为首项,2为公比的等比数列,则,即,故答案为:;.16、【解析】利用基本量结合已知列方程组求解即可.【详解】设等差数列的公差为由题可知即因为,所以解得:所以.故答案为:三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)是定值,定值为6【解析】(1)根据题意条件,可直接求出的值,然后再利用条件中、的关系,借助即可求解出、的值,从而得到椭圆方程;(2)根据已知条件设出、所在直线方程,然后与椭圆联立方程,分别表示出根与系数的关系,再表示出弦长关系,再计算点到直线的距离,把面积用和的式子表示出来,通过给出的面积的值,找到和的等量关系,将等量关系带入到利用跟与系数关系组合成的中即可得到答案.【小问1详解】由题意:,由知:,故椭圆C的标准方程为,【小问2详解】设:,①椭圆.②联立①②得:,,即∴,O到直线l的距离,∴,∴,即,∴.故为定值6.18、(1)(2)平行,证明过程见解析.【解析】(1)利用等体积法即可求解;(2)利用线面平行判定即可求解.【小问1详解】解:正三棱柱中,D是的中点,所以,,正三棱柱中,所以又因为正三棱柱中,侧面平面且交线为且平面中,所以平面又平面所以设点C到平面的距离为在三棱锥中,即所以点C到平面的距离为.【小问2详解】与平面的位置,证明如下:连接交于点,连接,如下图所示,因为正三棱柱的侧面为矩形所以为的中点又因为为中点所以为的中位线所以又因为平面,且平面所以平面19、(1)(2)(3)见解析【解析】(1)由题意求得,所以椭圆的方程为(2)联立直线与椭圆方程,由题意可得.三角形的高为.,面积表达式,当且仅当时,.即的面积的最大值是(3)结论为.利用题意有.所以试题解析:解:(Ⅰ)设椭圆的半焦距为因为椭圆的离心率是,所以,即由解得所以椭圆的方程为(Ⅱ)将代入,消去整理得令,解得设则,所以点到直线的距离为所以的面积,当且仅当时,所以的面积的最大值是(Ⅲ).证明如下:设直线,的斜率分别是,,则由(Ⅱ)得,所以直线,的倾斜角互补所以,所以所以20、(1)证明见解析(2)【解析】(1)取的中点,连接交于,连接,,由平面几何得,再根据线面平行的判定可得证;(2)建立如图所示的空间直角坐标系,利用向量法即可得结果.【小问1详解】取的中点,连接交于,连接,在三棱柱中,为的中点,,为的中点,且,且,四边形为平行四边形,又平面,平面,平面;【小问2详解】平面,,平面,,,两两垂直,以为原点,,,所在直线分别为轴,轴,轴,建立如图所示的空间直角坐标系,则,,,,设平面的法向量为,则即取,则,,又是平面的一个法向量,,故平面和平面夹角的余弦值为21、(1)证明见解析(2)【解析】(1)由水的体积得出,进而得出,,从而证明图2中的水面也是平行四边形;(2)在平面内,过点作,交于,由四边形是平行四边形,得出侧面与桌面所成的角即侧面与水面所成的角,再由直角三角形的边角关系得出其夹角.【小问1详解】由题意知,水的
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年度电机产品广告宣传与媒体投放合同3篇
- 2024年度美甲店装修设计合同
- 2024年度广告发布及赞助合同
- 《铅酸蓄电池维护》课件
- 《复地西安项目提案》课件
- 2024中国移动江西公司社会招聘24人易考易错模拟试题(共500题)试卷后附参考答案
- 2024中国电信青海海东分公司招聘易考易错模拟试题(共500题)试卷后附参考答案
- 2024中国电信杭州分公司招聘20人(浙江)易考易错模拟试题(共500题)试卷后附参考答案
- 2024中国江西国际经济技术合作限公司所属企业职业经理人公开选聘2人易考易错模拟试题(共500题)试卷后附参考答案
- 2024中国安能集团第二工程局限公司厦门分公司校园招聘90人易考易错模拟试题(共500题)试卷后附参考答案
- 2024精美餐桌的礼仪
- 基层管理者的沟通技巧和有效人际关系
- 2024年中国通号建设集团招聘笔试参考题库含答案解析
- 学生会培训课件
- 南开大学生命科学学院861动物学历年考研真题汇编
- 肿瘤科工作计划与总结报告
- 《数字化测图》教学教案
- 部编版五年级语文上册期末快乐读书吧-附答案
- Module8Unit1WeregoingtovisitHainan(课件)英语四年级上册
- 2023年幼儿照护及养育初级理论知识考试题库(附含答案)
- 高中期中考试成绩分析主题班会课件
评论
0/150
提交评论