吉林省长春市外国语学校2024届高二数学第一学期期末经典模拟试题含解析_第1页
吉林省长春市外国语学校2024届高二数学第一学期期末经典模拟试题含解析_第2页
吉林省长春市外国语学校2024届高二数学第一学期期末经典模拟试题含解析_第3页
吉林省长春市外国语学校2024届高二数学第一学期期末经典模拟试题含解析_第4页
吉林省长春市外国语学校2024届高二数学第一学期期末经典模拟试题含解析_第5页
已阅读5页,还剩9页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

吉林省长春市外国语学校2024届高二数学第一学期期末经典模拟试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.若两定点A,B的距离为3,动点M满足,则M点的轨迹围成区域的面积为()A. B.C. D.2.已知直线:和:,若,则实数的值为()A. B.3C.-1或3 D.-13.已知集合,则()A. B.C. D.4.在区间内随机取一个数,则方程表示焦点在轴上的椭圆的概率是A. B.C. D.5.如果椭圆上一点到焦点的距离等于6,则线段的中点到坐标原点的距离等于()A.7 B.10C.12 D.146.某中学举行党史学习教育知识竞赛,甲队有、、、、、共名选手其中名男生名女生,按比赛规则,比赛时现场从中随机抽出名选手答题,则至少有名女同学被选中的概率是()A. B.C. D.7.已知椭圆与圆在第二象限的交点是点,是椭圆的左焦点,为坐标原点,到直线的距离是,则椭圆的离心率是()A. B.C. D.8.对于实数a,b,c,下列命题为真命题的是()A.若,则 B.若,则C.若,则 D.若,则9.设是区间上的连续函数,且在内可导,则下列结论中正确的是()A.的极值点一定是最值点B.的最值点一定是极值点C.在区间上可能没有极值点D.在区间上可能没有最值点10.下列函数求导错误的是()A.B.C.D.11.已知等比数列各项均为正数,且,,成等差数列,则()A. B.C. D.12.设R,则“”是“”的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件二、填空题:本题共4小题,每小题5分,共20分。13.曲线围成的图形的面积是__________14.已知双曲线过点,且渐近线方程为,则该双曲线的标准方程为____________________.15.设,为实数,已知经过点的椭圆与双曲线有相同的焦点,则___________.16.在等差数列中,,那么等于______.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)在△ABC中,角A、B、C所对的边分别为a、b、c,角A、B、C的度数成等差数列,(1)若,求c的值;(2)求最大值18.(12分)已知等差数列的公差,前3项和,且成等比数列.(1)求数列的通项公式;(2)若,求数列的前项和.19.(12分)已知抛物线C:y2=2px(p>0)的焦点与椭圆M:=1的右焦点重合.(1)求抛物线C的方程;(2)直线y=x+m与抛物线C交于A,B两点,O为坐标原点,当m为何值时,=0.20.(12分)已知函数(1)当时,求在区间上的最值;(2)若在定义域内有两个零点,求的取值范围21.(12分)已知函数,曲线y=f(x)在点(0,4)处的切线方程为(1)求a,b的值;(2)求f(x)的极大值22.(10分)已知函数(1)当时,求的极值;(2)讨论的单调性

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】以点A为坐标原点,射线AB为x轴的非负半轴建立直角坐标系,求出点M的轨迹方程即可计算得解.【详解】以点A为坐标原点,射线AB为x轴的非负半轴建立直角坐标系,如图,设点,则,化简并整理得:,于是得点M的轨迹是以点为圆心,2为半径的圆,其面积为,所以M点的轨迹围成区域的面积为.故选:D2、D【解析】利用两直线平行列式求出a值,再验证即可判断作答.【详解】因,则,解得或,当时,与重合,不符合题意,当时,,符合题意,所以实数的值为-1.故选:D3、B【解析】先求得集合A,再根据集合的交集运算可得选项.【详解】解:因为,所以故选:B.4、D【解析】若方程表示焦点在轴上的椭圆,则,解得,,故方程表示焦点在轴上的椭圆的概率是,故选D.5、A【解析】可由椭圆方程先求出,在利用椭圆的定义求出,利用已知求解出,再取的中点,连接,利用中位线,即可求解出线段的中点到坐标原点的距离.【详解】因为椭圆,,所以,结合得,,取的中点,连接,所以为的中位线,所以.故选:A.6、D【解析】现场选名选手,共种情况,设,,,四位同学为男同学则没有女同学被选中的情况,共有6种,利用对立事件进行求解,即可得到答案;【详解】现场选名选手,基本事件有:,,,,,,,,,,,,,,共种情况,不妨设,,,四位同学为男同学则没有女同学被选中的情况是:,,,,,共种,则至少有一名女同学被选中的概率为.故选:.7、B【解析】连接,得到,作,求得,利用椭圆的定义,可求得,在直角中,利用勾股定理,整理的,即可求解椭圆的离心率.【详解】如图所示,连接,因为圆,可得,过点作,可得,且,由椭圆的定义,可得,所以,在直角中,可得,即,整理得,两侧同除,可得,解得或,又因为,所以椭圆的离心率为.故选:B【点睛】本题主要考查了椭圆的定义,直角三角形的勾股定理,以及椭圆的离心率的求解,其中解答中熟记椭圆的定义,结合直角三角形的勾股定理,列出关于的方程是解答的关键,着重考查了推理与计算能力,属于基础题.8、D【解析】判断不等式的真假,就是要考虑在不等式的变形过程中是否遵守不等式变形的规则.【详解】若,令,,,,,故A错误;若,令c=0,则,故B错误;若,令a=-1,b=-2,,,故C错误;∵,故,根据不等式运算规则,在不等式的两边同时乘以或除以一个正数,不等式的方向不变,故D正确.故选:D.9、C【解析】根据连续函数的极值和最值的关系即可判断【详解】根据函数的极值与最值的概念知,的极值点不一定是最值点,的最值点不一定是极值点.可能是区间的端点,连续可导函数在闭区间上一定有最值,所以选项A,B,D都不正确,若函数在区间上单调,则函数在区间上没有极值点,所以C正确故选:C.【点睛】本题主要考查函数的极值与最值的概念辨析,属于容易题10、C【解析】每一个选项根据求导公式及法则来运算即可判断.【详解】对于A,,正确;对于B,,正确;对于C,,不正确;对于D,,正确.故选:C11、A【解析】结合等差数列的性质求得公比,然后由等比数列的性质得结论【详解】设的公比为,因为,,成等差数列,所以,即,,或(舍去,因为数列各项为正)所以故选:A12、A【解析】根据不等式性质判断即可.【详解】若“”,则成立;反之,若,当,时,不一定成立.如,但.故“”是“”的充分不必要条件.故答案为:A.【点睛】本题考查充分条件、必要调价的判断,考查不等式与不等关系,属于基础题.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】当,时,已知方程是,即.它对应的曲线是第一象限内半圆弧(包括端点),它的圆心为,半径为.同理,当,;,;,时对应的曲线都是半圆弧(如图).它所围成的面积是.故答案为14、【解析】依题意,设所求的双曲线的方程为.点为该双曲线上的点,.该双曲线的方程为:,即.故本题正确答案是.15、1【解析】由点P在椭圆上,可得的值,再根据椭圆与双曲线有相同的焦点即可求解.【详解】解:因为点在椭圆上,所以,解得,所以椭圆方程为,又椭圆与双曲线有相同的焦点,所以,解得,故答案为:1.16、14【解析】根据等差数列的性质得到,求得,再由,即可求解.【详解】因为数列为等差数列,且,根据等差数列的性质,可得,解答,又由.故答案为:14.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2)【解析】(1)利用等差数列以及三角形内角和,正弦定理以及余弦定理求解即可;(2)利用正弦定理以及两角和与差的三角函数,结合三角函数的最值求解即可【详解】(1)由角A、B、C的度数成等差数列,得2B=A+C又,∴由正弦定理,得,即由余弦定理,得,即,解得(2)由正弦定理,得,∴,∴由,得所以当时,即时,18、(1)(2)【解析】(1)由,且成等比数列列式求解出和,然后写出;(2)由,用错位相减法求和即可.【详解】(1)∵,∴①又∵成等比数列,∴,②∵,由①②解得:,,∴(2)∵,,∴两式相减,得∴【点睛】本题考查了等差数列基本量的计算,错位相减法求和,属于中档题.19、(1)y2=4x(2)m=﹣4或m=0【解析】(1)由椭圆的右焦点得出的值,进而得出抛物线C的方程;(2)联立直线和抛物线方程,利用韦达定理结合数量积公式证明即可【小问1详解】由题意,椭圆=1的右焦点为(1,0),抛物线y2=2px的焦点为(,0),所以,解得p=2,所以抛物线的方程为y2=4x;【小问2详解】因为直线y=x+m与抛物线C交于A,B两点,设A(x1,y1),B(x2,y2),联立方程组,可得x2+2(m﹣2)x+m2=0,由Δ=4(m﹣2)2﹣4m2>0,解得m<1,所以x1+x2=﹣2m+4,x1x2=m2,又因为,又=(x1,y1),=(x2,y2),可得x1x2+y1y2=x1x2+(x1+m)(x2+m)=2x1x2+m(x1+x2)+m2=m2+4m=0,解得m=﹣4<1或m=0<1,故m=﹣4或m=0.20、(1),;(2).【解析】(1)当时,求出导函数,求出函数得单调区间,即可求出在区间上的最值;(2)由,分离参数得,根据函数得单调性作图,结合图像即可得出答案.【详解】解:(1)当时,,,∴在单调递减,在单调递增,,,∴,(2),则,∴在单调递增,在单调递减,,当时,,当时,,作出函数和得图像,∴由图象可得,.21、(1)a=4,b=4(2)【解析】(1)由题意得到关于的方程组,求解方程组即可求出答案.(2)结合(1)中求得的函数解析式,求导得到的单调性,可得当x=-2时,函数f(x)取得极大值.【小问1详解】由已知得f(0)=4,f′(0)=4,故b=4,a+b=8从而a=4,b=4【小问2详解】由(1)知,,令f′(x)=0得,x=-ln2或x=-2从而当时,f′(x)>0;当x∈(-2,-ln2)时,f′(x)<0故f(x)在(-∞,-2),(-ln2,+∞)上单调递增,在(-2,-ln2)上单调递减当

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论