吉林省白城市大安市第二中学2024届数学高二上期末教学质量检测试题含解析_第1页
吉林省白城市大安市第二中学2024届数学高二上期末教学质量检测试题含解析_第2页
吉林省白城市大安市第二中学2024届数学高二上期末教学质量检测试题含解析_第3页
吉林省白城市大安市第二中学2024届数学高二上期末教学质量检测试题含解析_第4页
吉林省白城市大安市第二中学2024届数学高二上期末教学质量检测试题含解析_第5页
已阅读5页,还剩14页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

吉林省白城市大安市第二中学2024届数学高二上期末教学质量检测试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.在等比数列{an}中,a3,a15是方程x2+6x+2=0的根,则的值为()A. B.C. D.或2.已知直线方程为,则其倾斜角为()A.30° B.60°C.120° D.150°3.如图,已知四棱锥,底面ABCD是边长为4的菱形,且,E为AD的中点,,则异面直线PC与BE所成角的余弦值为()A. B.C. D.4.已知等差数列的公差,记该数列的前项和为,则的最大值为()A.66 B.72C.132 D.1985.已知方程表示焦点在轴上的椭圆,则实数的取值范围是()A. B.C. D.6.已知数列的前n项和为,,,则()A. B.C.1025 D.20497.在直三棱柱中,,,则直线与所成角的大小为()A.30° B.60°C.120° D.150°8.设是椭圆的两个焦点,是椭圆上一点,且.则的面积为()A.6 B.C.8 D.9.若圆C:上有到的距离为1的点,则实数m的取值范围为()A. B.C. D.10.若函数有两个不同的极值点,则实数的取值范围是()A. B.C. D.11.设,则是的A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件12.已知命题:,命题:,则是的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件二、填空题:本题共4小题,每小题5分,共20分。13.如图,在平行六面体中,底面是边长为1的正方形,若,且,则的长为_________14.已知椭圆和双曲线有相同的焦点和,设椭圆和双曲线的离心率分别为,,P为两曲线的一个公共点,且(O为坐标原点).若,则的取值范围是______15.如图,在矩形中,,,将沿BD所在的直线进行翻折,得到空间四边形.给出下面三个结论:①在翻折过程中,存在某个位置,使得;②在翻折过程中,三棱锥的体积不大于;③在翻折过程中,存在某个位置,使得异面直线与所成角45°.其中所有正确结论的序号是___________.16.若函数在(0,+∞)内有且只有一个零点,则a的值为_____三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知函数在处的切线方程为.(1)求的解析式;(2)求函数图象上的点到直线的距离的最小值.18.(12分)已知圆,直线(1)判断直线与圆的位置关系;(2)若直线与圆交于不同两点,且,求直线的方程19.(12分)如图,在正方体中,是棱的中点.(1)试判断直线与平面的位置关系,并说明理由;(2)求证:直线面.20.(12分)已知,其中.(1)若,求在处的切线方程;(2)若是函数的极小值点,求函数在区间上的最值;(3)讨论函数的单调性.21.(12分)已知椭圆的离心率为,以椭圆两个焦点与短轴的一个端点为顶点构成的三角形的面积为(1)求椭圆C的标准方程;(2)过点作直线l与椭圆C相切于点Q,且直线l斜率大于0,过线段PQ的中点R作直线交椭圆于A,B两点(点A,B不在y轴上),连结PA,PB,分别与椭圆交于点M,N,试判断直线MN的斜率是否为定值;若是,请求出该定值22.(10分)已知函数,其中(1)当时,求函数的单调区间;(2)①若恒成立,求的最小值;②证明:,其中.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】由韦达定理得a3a15=2,由等比数列通项公式性质得:a92=a3a15=a2a16=2,由此求出答案【详解】解:∵在等比数列{an}中,a3,a15是方程x2-6x+2=0的根,∴a3a15=2>0,a3+a15=-6<0∴a2a16=a3a15=2,a92=a3a15=2,∴a9=,∴,故选B【点睛】本题考查等比数列中两项积与另一项的比值的求法,是基础题,解题时要认真审题,注意等比数列的性质的合理运用2、D【解析】由直线方程可得斜率,根据斜率与倾斜角的关系即可求倾斜角大小.【详解】由题设,直线斜率,若直线的倾斜角为,则,∵,∴.故选:D3、B【解析】根据异面直线的定义找出角即为所求,再利用余弦定理解三角形即可得出.【详解】分别取BC,PB的中点F,G,连接DF,FG,DG,如图,因为E为AD的中点,四边形ABCD是菱形,所以,所以(其补角)是异面直线PC与BE所成的角因为底面ABCD是边长为4菱形,且,,由余弦定理可知,所以,所以,所以异面直线PC与BE所成角的余弦值为,故选:B4、A【解析】根据等差数列的公差,求得其通项公式求解.【详解】因为等差数列的公差,所以,则,所以,由,得,所以或12时,该数列的前项和取得最大值,最大值为,故选:A5、D【解析】根据已知条件可得出关于实数的不等式组,由此可解得实数的取值范围.【详解】因为方程表示焦点在轴上的椭圆,则,解得.故选:D.6、B【解析】根据题意得,进而根据得数列是等比数列,公比为,首项为,再根据等比数列求和公式求解即可.【详解】解:因为数列的前n项和为满足,所以当时,,解得,当时,,即所以,解得或,因为,所以.所以,,所以当时,,所以,即所以数列是等比数列,公比为,首项为,所以故选:B7、B【解析】根据三棱柱的特征补全为正方体,则,为直线与所成角,连接,则为等边三角形即可得解.【详解】根据直三棱柱的特征,补全可得如图所示的正方体,易知,为直线与所成角,连接,则为等边三角形,所以,所以直线与所成角的大小为.故选:B8、B【解析】利用椭圆的几何性质,得到,,进而利用得出,进而可求出【详解】解:由椭圆的方程可得,所以,得且,,在中,由余弦定理可得,而,所以,,又因为,,所以,所以,故选:B9、C【解析】利用圆与圆的位置关系进行求解即可.【详解】将圆C的方程化为标准方程得,所以.因为圆C上有到的距离为1的点,所以圆C与圆:有公共点,所以因为,所以,解得,故选:C10、D【解析】计算,然后等价于在(0,+∞)由2个不同的实数根,然后计算即可.【详解】的定义域是(0,+∞),,若函数有两个不同的极值点,则在(0,+∞)由2个不同的实数根,故,解得:,故选:D.【点睛】本题考查根据函数极值点个数求参,考查计算能力以及思维转变能力,属基础题.11、B【解析】,,所以是必要不充分条件,故选B.考点:1.指、对数函数的性质;2.充分条件与必要条件.12、B【解析】利用充分条件和必要条件的定义判断.【详解】因为命题:或,命题:,所以是的必要不充分条件,故选:B二、填空题:本题共4小题,每小题5分,共20分。13、【解析】因为,所以,即,故14、【解析】设出半焦距c,用表示出椭圆的长半轴长、双曲线的实半轴长,由可得为直角三角形,由此建立关系即可计算作答.【详解】设椭圆的长半轴长为,双曲线的实半轴长为,它们的半焦距为c,于是得,,由椭圆及双曲线的对称性知,不妨令焦点和在x轴上,点P在y轴右侧,由椭圆及双曲线定义得:,解得,,因,即,而O是线段的中点,因此有,则有,即,整理得:,从而有,即有,又,则有,即,解得,所以的取值范围是.故答案:15、②③【解析】在矩形中,过点作的垂线,垂足分别为,对于①,连接,假设存在某个位置,使得,则可得到,进而得矛盾,可判断;对于②在翻折过程中,当平面平面时,三棱锥的体积取得最大值,再根据几何关系计算即可;对于③,由题知,,设平面与平面所成的二面角为,进而得,进而得异面直线与所成角的余弦值的范围为,即可判断.【详解】解:如图1,在矩形中,过点作的垂线,垂足分别为,则在在翻折过程中,形成如图2的几何体,故对于①,连接,假设存在某个位置,使得,由于,,所以平面,所以,这与图1中的与不垂直矛盾,故错误;对于②在翻折过程中,当平面平面时,三棱锥的体积取得最大值,此时,体积为,故三棱锥的体积不大于,故正确;对于③,,,由②的讨论得,所以,所以,设翻折过程中,平面与平面所成的二面角为,所以,故,由于要使直线与为异面直线,所以,所以,所以,所以异面直线与所成角的余弦值的范围为,由于,所以在翻折过程中,存在某个位置,使得异面直线与所成角为45°.故答案为:②③16、a=3【解析】对函数进行求导,分类讨论函数单调性,根据单调性结合已知可以求出a的值.【详解】∵函数在(0,+∞)内有且只有一个零点,∴f′(x)=2x(3x﹣a),x∈(0,+∞),①当a≤0时,f′(x)=2x(3x﹣a)>0,函数f(x)在(0,+∞)上单调递增,f(0)=1,f(x)在(0,+∞)上没有零点,舍去;②当a>0时,f′(x)=2x(3x﹣a)>0的解为x,∴f(x)在(0,)上递减,在(,+∞)递增,又f(x)只有一个零点,∴f()1=0,解得a=3故答案为:a=3【点睛】本题考查了利用导数研究已知函数的零点求参数取值问题,考查了分类讨论和数学运算能力.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2).【解析】(1)由题可得,然后利用导数的几何意义即求;(2)由题可得切点到直线的距离最小,即得.【小问1详解】∵函数,∴的定义域为,,∴在处切线的斜率为,由切线方程可知切点为,而切点也在函数图象上,解得,∴的解析式为;【小问2详解】由于直线与直线平行,直线与函数在处相切,所以切点到直线的距离最小,最小值为,故函数图象上的点到直线的距离的最小值为.18、(1)直线与圆相交;(2)或【解析】(1)通过比较圆心到直线的距离与半径的关系,不难发现直线和圆相交.(2)根据垂径定理,得到圆心与直线的距离,进而列方程求解即可试题解析:(1)将圆方程化为标准方程,所以圆的圆心,半径,圆心到直线的距离,因此直线与圆相交(2)设圆心到直线的距离为,则,又,解得所求直线为或考点:直线与圆的位置关系19、(1)平面AEC,理由见解析(2)证明见解析【解析】(1)以线面平行的判定定理去证明直线与平面平行即可;(2)以线面垂直的判定定理去证明直线面即可.【小问1详解】连接BD,设,连接OE.在中,O、E分别是BD、的中点,则.因为直线OE在平面AEC上,而直线不在平面AEC上,根据直线与平面平行的判定定理,得到直线平面AEC.【小问2详解】正方体中,故,又,故同理故,又,故又根据直线与平面垂直的判定定理,得直线平面.20、(1);(2)最大值为5,最小值为;(3)答案见解析.【解析】(1)求出导函数,进而根据导数的几何意义求出切线的斜率,然后求出切线方程;(2)根据求出a,进而求出函数的单调区间,然后求出函数的最值;(3)先求出导函数,然后讨论a的取值范围,进而求出函数的单调区间.【小问1详解】当时,,,切点坐标为,,切线的斜率为,切线方程为,即.【小问2详解】,是函数的极小值点,,即,,令,得或,令,得,的单调递增区间为,,的单调递减区间为,,函数在区间上的最大值为5,最小值为.【小问3详解】函数的定义域为,,令得,.①当时,,函数在R上单调递增;②当时,,令,得或,令,得,的单调递增区间为,,的单调递减区间为;③当时,,令,得或,令,得,的单调递增区间为,,的单调递减区间为.综上:时,,函数R上单调递增;时,的单调递增区间为,,单调递减区间为;时,的单调递增区间为,,单调递减区间为.21、(1)(2)是,【解析】(1)根据离心率以及椭圆两个焦点与短轴的一个端点为顶点构成的三角形的面积列出等式即可求解;(2)设出相关直线与相关点的坐标,直线与椭圆联立,点的坐标配合斜率公式化简,再运用韦达理化简可证明.【小问1详解】由题意得,解得,则椭圆C的标准方程为【小问2详解】设切线PQ的方程为,,,,,由,消去y得①,则,解得或(舍去),将代入①得,,解得,则,所以,又R为PQ中点,则,因为PA,PB斜率都存在,不妨设,,由①可得,所以,,同理,,则,又R,A,B三点共线,则,化简得,所以.2

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论