版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
吉林省长春市田家炳实验中学2024届数学高二上期末考试试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知P是椭圆上的一点,是椭圆的两个焦点且,则的面积是()A. B.2C. D.12.在正方体中,分别为的中点,为侧面的中心,则异面直线与所成角的余弦值为()A. B.C. D.3.过抛物线焦点的直线与抛物线交于两点,,抛物线的准线与轴交于点,则的面积为()A. B.C. D.4.在等比数列中,,,则等于()A. B.5C. D.95.我国古代数学名著《算法统宗》中说:“九百九十六斤棉,赠分八子做盘缠,次第每人多十七,要将第八数来言,务要分明依次第,孝和休惹外人传.”意为:“996斤棉花,分别赠送给8个子女做旅费,从第一个孩子开始,以后每人依次多17斤,直到第8个孩子为止.分配时一定要依照次序分,要顺从父母,兄弟间和气,不要引得外人说闲话.”在这个问题中,第5个孩子分到棉花为()A.133斤 B.116斤C.99斤 D.65斤6.等差数列的前项和为,若,,则()A.12 B.18C.21 D.277.已知椭圆的长轴长为,短轴长为,则椭圆上任意一点到椭圆中心的距离的取值范围是()A. B.C. D.8.校庆当天,学校需要在靠墙的位置用围栏围起一个面积为200平方米的矩形场地.用来展示校友的书画作品.靠墙一侧不需要围栏,则围栏总长最小需要()米A.20 B.40C. D.9.当圆的圆心到直线的距离最大时,()A B.C. D.10.在三棱锥中,,,,若,,则()A. B.C. D.11.已知函数,.若存在三个零点,则实数的取值范围是()A. B.C. D.12.过原点O作两条相互垂直的直线分别与椭圆交于A、C与B、D,则四边形ABCD面积最小值为()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.某商场对华为手机近28天的日销售情况进行统计,得到如下数据,t36811ym357利用最小二乘法得到日销售量y(百部)与时间t(天)的线性回归方程为,则表格中的数据___________.14.若,均为正数,且,(1)的最大值为;(2)的最小值为;(3)的最小值为;(4)的最小值为,则结论正确的是__________15.曲线在处的切线方程为______.16.设等差数列的前项和为,若,,则______三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)如图,四棱锥P—ABCD中,底面ABCD是边长为的正方形E,F分别为PC,BD的中点,侧面PAD⊥底面ABCD,且PA=PD=AD.(Ⅰ)求证:EF//平面PAD;(Ⅱ)求三棱锥C—PBD的体积.18.(12分)在四面体ABCD中,CB=CD,,且E,F分别是AB,BD的中点,求证:(I)直线;(II).19.(12分)已知圆:与直线:.(1)证明:直线过定点,并求出其坐标;(2)当时,直线l与圆C交于A,B两点,求弦的长度.20.(12分)已知等差数列满足,前7项和为(Ⅰ)求的通项公式(Ⅱ)设数列满足,求的前项和.21.(12分)2021年10月16日,搭载“神舟十三号”的火箭发射升空,有很多民众通过手机、电视等方式观看有关新闻.某机构将关注这件事的时间在2小时以上的人称为“天文爱好者”,否则称为“非天文爱好者”,该机构通过调查,从参与调查的人群中随机抽取100人进行分析,得到下表(单位:人):天文爱好者非天文爱好者合计女203050男351550合计5545100(1)能否有99%的把握认为“天文爱好者”或“非天文爱好者”与性别有关?(2)现从抽取的女性人群中,按“天文爱好者”和“非天文爱好者”这两种类型进行分层抽样抽取5人,然后再从这5人中随机选出3人,记其中“天文爱好者”的人数为X,求X的分布列和数学期望附:,其中n=a+b+c+d0.100.050.0100.0050.0012.7063.8416.6357.87910.82822.(10分)已知数列满足各项均不为0,,且,.(1)证明:为等差数列,并求的通项公式;(2)令,,求.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】设,先求出m、n,再利用面积公式即可求解.【详解】在中,设,则,解得:.因为,所以,所以的面积是.故选:A2、A【解析】建立空间直角坐标系,用空间向量求解异面直线夹角的余弦值.【详解】如图,以D为坐标原点,DA所在直线为x轴,DC所在直线为y轴,所在直线为z轴建立空间直角坐标系,设正方体棱长为2,则,,,,则,,设异面直线与所成角为(),则.故选:A3、B【解析】画出图形,利用已知条件结合抛物线的定义求解边长CF,BK,然后求解三角形的面积即可【详解】如图,设拋物线的准线为,过作于,过作于,过作于,设,则根据抛物线的定义可得,,,的面积为,故选:.4、D【解析】由等比数列的项求公比,进而求即可.【详解】由题设,,∴故选:D5、A【解析】根据等差数列的前n项和公式、等差数列的通项公式进行求解即可.【详解】依题意得,八个子女所得棉花斤数依次构成等差数列,设该等差数列为,公差为d,前n项和为,第一个孩子所得棉花斤数为,则由题意得,,解得,故选:A6、B【解析】根据等差数列的前项和为具有的性质,即成等差数列,由此列出等式,求得答案.【详解】因为为等差数列的前n项和,且,,所以成等差数列,所以,即,解得=18,故选:B.7、A【解析】不妨设椭圆的焦点在轴上,设点,则,且有,利用二次函数的基本性质可求得的取值范围.【详解】不妨设椭圆的焦点在轴上,则该椭圆的标准方程为,设点,则,且有,所以,.故选:A.8、B【解析】在出矩形中,设,得到,结合基本不等式,即可求解【详解】如图所示,在矩形中,设,则,根据题意,可得矩形围栏总长为因为,可得,当且仅当时,即时,等号成立,即围栏总长最小需要米.故选:B.9、C【解析】求出圆心坐标和直线过定点,当圆心和定点的连线与直线垂直时满足题意,再利用两直线垂直,斜率乘积为-1求解即可.【详解】解:因为圆的圆心为,半径,又因为直线过定点A(-1,1),故当与直线垂直时,圆心到直线的距离最大,此时有,即,解得.故选:C.10、B【解析】根据空间向量的基本定理及向量的运算法则计算即可得出结果.【详解】连接,因为,所以,因为,所以,所以,故选:B11、B【解析】根据题意,当时,有一个零点,进而将问题转化为当时,有两个实数根,再研究函数即可得答案.【详解】解:因为存在三个零点,所以方程有三个实数根,因为当时,由得,解得,有且只有一个实数根,所以当时,有两个实数根,即有两个实数根,所以令,则,所以当时,,单调递增,当时,,单调递减,因为,,,所以的图象如图所示,所以有两个实数根,则故选:B12、A【解析】直线AC、BD与坐标轴重合时求出四边形面积,与坐标轴不重合求出四边形ABCD面积最小值,再比较大小即可作答.【详解】因四边形ABCD的两条对角线互相垂直,由椭圆性质知,四边形ABCD的四个顶点为椭圆顶点时,而,四边形ABCD的面积,当直线AC斜率存在且不0时,设其方程为,由消去y得:,设,则,,直线BD方程为,同理得:,则有,当且仅当,即或时取“=”,而,所以四边形ABCD面积最小值为.故选:A二、填空题:本题共4小题,每小题5分,共20分。13、1【解析】根据已知条件,求出,的平均值,再结合线性回归方程过样本中心,即可求解【详解】解:由表中数据可得,,,线性回归方程为,,解得故答案为:114、(1)(2)(4).【解析】利用基本不等式求的最大值可判断(1);利用“”的妙用以及基本不等式可判断(2);将所求代数式转化为关于的二次函数结合由二次函数的性质可得最值判断C、D,进而可得正确答案.【详解】对于(1):因为,均为正数,且,则有,当且仅当时等号成立,即的最大值为,故(1)正确;对于(2):因为,当且仅当时等号成立,即的最小值为,故(2)正确;对于(3):因为,所以,在上单调递减,无最小值,故(3)不正确;对于(4):,当且仅当时等号成立,即的最小值为,故(4)正确.故答案为:(1)(2)(4).15、【解析】先求出函数的导函数,然后结合导数的几何意义求解即可.【详解】解:由,得,则,即当时,,所以切线方程为:,故答案为:.【点睛】本题考查了曲线在某点处的切线方程的求法,属基础题.16、77【解析】依题意利用等差中项求得,进而求得.【详解】依题意可得,则,故故答案为:77.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)见解析(2)【解析】本试题主要是考查了线面平行的判定和三棱锥体积的求解的综合问题.培养了同学们的推理论证能力和计算能力(1)根据已知的条件关键是分析出EF//PA,利用线面平行判定定理得到(2)根据上一问中的结论可知PM⊥平面ABCD.然后利用转换顶点的思想求解棱锥的体积解:(Ⅰ)证明:连接AC,则F是AC的中点,E为PC的中点,故在CPA中,EF//PA,且PA平面PAD,EF平面PAD,∴EF//平面PAD(Ⅱ)取AD的中点M,连接PM,∵PA=PD,∴PM⊥AD,又平面PAD⊥平面ABCD,平面PAD∩平面ABCD=AD,∴PM⊥平面ABCD.在直角PAM中,求得PM=,∴PM=18、(I)证明见解析(II)证明见解析【解析】证明:(I)E,F分别为AB,BD的中点(II),又,所以19、(1)证明见解析,(2)【解析】(1)将直线方程化为,解方程得出定点;(2)求出圆心到直线的距离,再由几何法得出弦长.【小问1详解】证明:因为直线,所以.令,解得,所以不论取何值,直线必过定点【小问2详解】当时,直线为,圆心圆心到直线的距离,则20、(1)(2).【解析】(1)根据等差数列的求和公式可得,得,然后由已知可得公差,进而求出通项;(2)先明确=,为等差乘等比型通项故只需用错位相减法即可求得结论.解析:(Ⅰ)由,得因为所以(Ⅱ)21、(1)有(2)分布列见解析,【解析】(1)依题意由列联表计算出卡方,与参考数值比较,即可判断;(2)按照分层抽样得到有2人为“天文爱好者”,有3人为“非天文爱好者”,记“天文爱好者”的人数为X,则X的可能值为0,1,2,即可求出所对应的概率,从而得到分布列与数学期望;【小问1详解】解:由题意,所以有99%的把握认为“天文爱好者”或“非天文爱好者”与性别有关.【小问2详解】解:抽取的100人中女性人群有50人,其中“天文爱好者”有20人
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年公司劳动协议标准样本版B版
- 2024年度土地测绘制式合同合同版B版
- 2024年双方自愿离婚协议版A版
- 2024年度业务人员劳动协议版B版
- 2024合同变更声明协议范本
- 2024年度化工产品买卖协议模板文件版B版
- 2024年定制办公设备供应协议范本版
- 2024年厂房租赁安全规则标准协议模板版B版
- 2024年婚姻终止合同书无偿提供版
- 2024住宅墙体拆除作业合同示例一
- SOAP病例书写规范
- 兽医的生涯人物访谈报告
- 2023届高考英语全国甲卷试卷讲评课件
- 《条形统计图》(教学设计)-2024-2025学年人教版四年级数学上册
- 2024-2025学年新教材高中政治 4.2 实现中华民族伟大复兴的中国梦教案 新人教版必修第一册
- 期中测试卷(1-4单元)(试题)2024-2025学年人教版数学六年级上册
- 2024年物业管理员理论知识考试题库(含各题型)
- 游遍亚运参赛国(地区)智慧树知到答案2024年浙江旅游职业学院
- 卧床患者常见并发症
- 医疗器械营销策划服务合同范本2024年
- 国家开放大学电大本科《工程经济与管理》2023-2024期末试题及答案(试卷代号:1141)
评论
0/150
提交评论