版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
吉林省舒兰一中、吉化一中、九台一中、榆树实验中学等八校联考2024届高二上数学期末综合测试试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知函数的导函数的图像如图所示,则下列判断正确的是()A.在区间上,函数增函数 B.在区间上,函数是减函数C.为函数的极小值点 D.2为函数的极大值点2.已知抛物线,过抛物线的焦点作轴的垂线,与抛物线交于、两点,点的坐标为,且为直角三角形,则以直线为准线的抛物线的标准方程为()A. B.C. D.3.据记载,欧拉公式是由瑞士著名数学家欧拉发现的,该公式被誉为“数学中的天桥”特别是当时,得到一个令人着迷的优美恒等式,将数学中五个重要的数(自然对数的底,圆周率,虚数单位,自然数的单位和零元)联系到了一起,有些数学家评价它是“最完美的数学公式”.根据欧拉公式,复数的虚部()A. B.C. D.4.已知椭圆的左焦点是,右焦点是,点P在椭圆上,如果线段的中点在y轴上,那么()A.3:5 B.3:4C.5:3 D.4:35.已知四棱柱ABCD-A1B1C1D1的底面是边长为2的正方形,侧棱与底面垂直,若点C到平面AB1D1的距离为,则直线与平面所成角的余弦值为()A. B.C. D.6.函数在上的极大值点为()A. B.C. D.7.若,则下列不等式①;②;③;④中,正确的不等式有()A.0个 B.1个C.2个 D.3个8.等差数列中,,则()A. B.C. D.9.若两个不同平面,的法向量分别为,,则()A.,相交但不垂直 B.C. D.以上均不正确10.已知数列满足,且,那么()A. B.C. D.11.已知中,内角,,的对边分别为,,,,.若为直角三角形,则的面积为()A. B.C.或 D.或12.已知抛物线的焦点为,在抛物线上有一点,满足,则的中点到轴的距离为()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知抛物线的准线方程为,则________14.抛物线的焦点坐标为________15.如图,四棱锥的底面是正方形,底面,为的中点,若,则点到平面的距离为___________.16.如图所示,奥林匹克标志由五个互扣的环圈组成,五环象征五大洲的团结.若从该奥林匹克标志的五个环圈中任取2个,则这2个环圈恰好相交的概率为___________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)大学生王蕾利用暑假参加社会实践,对机械销售公司月份至月份销售某种机械配件的销售量及销售单价进行了调查,销售单价和销售量之间的一组数据如表所示:月份销售单价(元)销售量(件)(1)根据至月份数据,求出关于的回归直线方程;(2)若剩下的月份的数据为检验数据,并规定由回归直线方程得到的估计数据与检验数据的误差不超过元,则认为所得到的回归直线方程是理想的,试问(1)中所得到的回归直线方程是否理想?(注:,,参考数据:,)18.(12分)已知双曲线的渐近线方程为,且过点(1)求双曲线的方程;(2)过双曲线的一个焦点作斜率为的直线交双曲线于两点,求弦长19.(12分)已知抛物线y2=2px(p>0)的焦点为F,过F且与x轴垂直的直线交该抛物线于A,B两点,|AB|=4(1)求抛物线的方程;(2)过点F的直线l交抛物线于P,Q两点,若△OPQ的面积为4,求直线l的斜率(其中O为坐标原点)20.(12分)已知直线,,,其中与的交点为P(1)求过点P且与平行的直线方程;(2)求以点P为圆心,截所得弦长为8的圆的方程21.(12分)圆锥曲线的方程是.(1)若表示焦点在轴上的椭圆,求的取值范围;(2)若表示焦点在轴上且焦距为的双曲线,求的值.22.(10分)已知抛物线焦点是,斜率为的直线l经过F且与抛物线相交于A、B两点(1)求该抛物线的标准方程和准线方程;(2)求线段AB的长
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】根据导函数与原函数的关系可求解.【详解】对于A,在区间,,故A不正确;对于B,在区间,,故B不正确;对于C、D,由图可知在区间上单调递增,在区间上单调递减,且,所以为函数的极大值点,故C不正确,D正确.故选:D2、B【解析】设点位于第一象限,求得直线的方程,可得出点的坐标,由抛物线的对称性可得出,进而可得出直线的斜率为,利用斜率公式求得的值,由此可得出以直线为准线的抛物线的标准方程.【详解】设点位于第一象限,直线的方程为,联立,可得,所以,点.为等腰直角三角形,由抛物线的对称性可得出,则直线的斜率为,即,解得.因此,以直线为准线的抛物线的标准方程为.故选:B.【点睛】本题考查抛物线标准方程的求解,考查计算能力,属于中等题.3、D【解析】由欧拉公式的定义和复数的概念进行求解.【详解】由题意,得,则复数的虚部为.故选:D.4、A【解析】求出椭圆的焦点坐标,再根据点在椭圆上,线段的中点在轴上,求得点坐标,进而计算,从而求解.【详解】由椭圆方程可得:,设点坐标为,线段的中点为,因为线段中点在轴上,所以,即,代入椭圆方程得或,不妨取,则,所以,故选:A.5、A【解析】先由等面积法求得的长,再以为坐标原点,建立如图所示的空间直角坐标系,运用线面角的向量求解方法可得答案【详解】如图,连接交于点,过点作于,则平面,则,设,则,则根据三角形面积得,代入解得以为坐标原点,建立如图所示的空间直角坐标系则,,设平面的法向量为,,,则,即,令,得,所以直线与平面所成的角的余弦值为,故选:6、C【解析】求出函数的导数,利用导数确定函数的单调性,即可求出函数的极大值点【详解】,∴当时,,单调递减,当时,,单调递增,当时,,单调递减,∴函数在的极大值点为故选:C7、C【解析】由条件,可得,利用不等式的性质和基本不等式可判断①、②、③、④中不等式的正误,得出答案.【详解】因为,所以.因此,且,且②、③不正确.所以,所以①正确,由得、均为正数,所以,(由条件,所以等号不成立),所以④正确.故选:C.8、C【解析】由等差数列的前项和公式和性质进行求解.【详解】由题意,得.故选:C.9、B【解析】由向量数量积为0可求.【详解】∵,,∴,∴,∴,故选:B.10、D【解析】由递推公式得到,,,再结合已知即可求解.【详解】解:由,得,,又,那么故选:D11、C【解析】由正弦定理化角为边后,由余弦定理求得,然后分类讨论:或求解【详解】由正弦定理,可化为:,即,所以,,所以,又为直角三角形,若,则,,,,若,则,,,故选:C12、A【解析】设点,利用抛物线的定义求出的值,可求得点的横坐标,即可得解.【详解】设点,易知抛物线的焦点为,由抛物线的定义可得,得,所以,点的横坐标为,故点到轴的距离为.故选:A.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】由准线方程的表达式构建方程,求得答案.【详解】因为准线方程为,所以故答案为:4【点睛】本题考查抛物线中准线的方程表示,属于基础题.14、【解析】利用焦点坐标为求解即可【详解】因为,所以,所以焦点的坐标为,故答案:15、【解析】以点为坐标原点,、、所在直线分别为、、轴建立空间直角坐标系,利用空间向量法可求得点到平面的距离.【详解】因为底面,,以点为坐标原点,、、所在直线分别为、、轴建立空间直角坐标系,则、、、,设平面的法向量为,,,则,取,可得,,所以,点到平面的距离为.故答案为:.16、【解析】利用古典概型求概率.【详解】从该奥林匹克标志的五个环圈中任取2个,共有10种情况,其中这2个环圈恰好相交的情况有4种,则所求的概率.故答案为:.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)回归直线方程是理想的【解析】(1)根据表格数据求得,利用最小二乘法可求得回归直线方程;(2)令回归直线中的可求得估计数据,对比检验数据即可确定结论.小问1详解】由表格数据可知:,,,则,关于的回归直线方程为;【小问2详解】令回归直线中的,则,,(1)中所得到的回归直线方程是理想的.18、(1);(2).【解析】(1)根据双曲线渐近线斜率、双曲线过点可构造方程求得,由此可得双曲线方程;(2)由双曲线方程可得焦点坐标,由此可得方程,与双曲线方程联立后,利用弦长公式可求得结果.【小问1详解】由双曲线方程知:渐近线斜率,又渐近线方程为,;双曲线过点,;由得:,双曲线的方程为:;【小问2详解】由(1)得:双曲线的焦点坐标为;若直线过双曲线的左焦点,则,由得:;设,,则,;由双曲线对称性可知:当过双曲线右焦点时,;综上所述:.19、(1);(2).【解析】(1)根据抛物线的定义以及抛物线通径的性质可得,从而可得结果;(2)设直线的方程为,代入,得,利用弦长公式,结合韦达定理可得的值,由点到直线的距离公式,根据三角形面积公式可得,从而可得结果.【详解】(1)由抛物线的定义得到准线的距离都是p,所以|AB|=2p=4,所以抛物线的方程为y2=4x(2)设直线l的方程为y=k(x-1),P(x1,y1),Q(x2,y2)因为直线l与抛物线有两个交点,所以k≠0,得,代入y2=4x,得,且恒成立,则,y1y2=-4,所以又点O到直线l的距离,所以,解得,即【点睛】本题主要考查直线与抛物线的位置关系的相关问题,意在考查综合利用所学知识解决问题能力和较强的运算求解能力,其常规思路是先把直线方程与圆锥曲线方程联立,消元、化简,然后应用根与系数的关系建立方程,解决相关问题20、(1);(2).【解析】(1)首先求、的交点坐标,根据的斜率,应用点斜式写出过P且与平行的直线方程;(2)根据弦心距、弦长、半径的关系求圆的半径,结合P的坐标写出圆的方程.【小问1详解】联立、得:,可得,故,又的斜率为,则过P且与平行的直线方程,∴所求直线方程为.【小问2详解】由(1),P到的距离,∴以P为圆心,截所得弦长为8的圆的半径,∴所求圆的方程为.21、(1)且(2)【解析】(1)由条件可得,解出即可;(2)由条件可得,解出即可.【小问1详解】若表示焦点在轴上椭圆,则,解得且【小
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- (校园欺凌)主题班会课件
- 财管开题报告范文
- 病假报告范文
- 看图写话教学课件
- 司机课件教学课件
- 商铺转让合同
- 端午节的由来课件
- 《高级财务会计总论》课件
- 咨询服务协议书范本
- 植物采购合同
- 公立医院绩效考核表
- 小班语言儿歌活动《大气球》课件
- 错混料管理规范
- 《灯箱制作教程》课件
- 中职开设专业方案
- 新能源汽车的市场价格变化趋势
- 护理职业生涯规划书成长赛道
- 2024年重庆市优质企业梯度培育政策解读学习培训课件资料(专精特新 专精特新小巨人中小企业 注意事项)
- 吉林省延边州2023-2024学年高一上学期期末学业质量检测数学试题(解析版)
- 三体二黑暗森林
- 2023年1月福建高中学业水平合格性考试语文试卷真题(含答案)
评论
0/150
提交评论