版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
江苏省连云港市赣榆县海头高级中学2023-2024学年高二数学第一学期期末经典试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.下列说法中正确的是()A.棱柱的侧面可以是三角形B.棱台的所有侧棱延长后交于一点C.所有几何体的表面都能展开成平面图形D.正棱锥的各条棱长都相等2.设,直线,,则“”是“”的()A.充分不必要条件 B.必要不充分条件C.充分必要条件 D.既不充分也不必要条件3.给出如下四个命题正确的是()①方程表示的图形是圆;②椭圆的离心率;③抛物线的准线方程是;④双曲线的渐近线方程是A.③ B.①③C.①④ D.②③④4.甲、乙、丙、丁共4名同学进行党史知识比赛,决出第1名到第4名的名次(名次无重复),其中前2名将获得参加市级比赛的资格,甲和乙去询问成绩,回答者对甲说:“很遗憾,你没有获得参加市级比赛的资格.”对乙说:“你当然不会是最差的.”从这两个回答分析,4人的排名有()种不同情况.A.6 B.8C.10 D.125.设分别为圆和椭圆上的点,则两点间的最大距离是A. B.C. D.6.已知A为抛物线C:y2=2px(p>0)上一点,点A到C的焦点的距离为12,到y轴的距离为9,则p=()A.2 B.3C.6 D.97.已知经过两点(5,m)和(m,8)的直线的斜率等于1,则m的值为()A.5 B.8C. D.78.①直线在轴上的截距为;②直线的倾斜角为;③直线必过定点;④两条平行直线与间的距离为.以上四个命题中正确的命题个数为()A. B.C. D.9.设是空间一定点,为空间内任一非零向量,满足条件的点构成的图形是()A.圆 B.直线C.平面 D.线段10.函数在单调递增的一个必要不充分条件是()A. B.C. D.11.已知函数的导函数为,若的图象如图所示,则函数的图象可能是()A. B.C. D.12.已知E、F分别为椭圆的左、右焦点,倾斜角为的直线l过点E,且与椭圆交于A,B两点,则的周长为A.10 B.12C.16 D.20二、填空题:本题共4小题,每小题5分,共20分。13.点为椭圆上的一动点,则点到直线的距离的最小值为___________.14.若函数是上的增函数,则实数的取值范围是__________.15.若直线过圆的圆心,则实数a的值为_________.16.已知数列满足,则其通项公式________三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知公差不为零的等差数列的前项和为,,,成等比数列且满足________.请在①;②;③,这三个条件中任选一个补充在上面题干中,并回答以下问题.(1)求数列的通项公式;(2)设,求数列的前项和.18.(12分)已知圆C的圆心在y轴上,且过点,(1)求圆C的方程;(2)已知圆C上存在点M,使得三角形MAB的面积为,求点M的坐标19.(12分)已知双曲线C:(a>0,b>0)的离心率为,实轴长为2.(1)求双曲线的焦点到渐近线的距离;(2)若直线y=x+m被双曲线C截得的弦长为,求m的值.20.(12分)已知椭圆C:的长轴长为4,离心率e是方程的一根(1)求椭圆C的方程;(2)已知O是坐标原点,斜率为k的直线l经过点,已知直线l与椭圆C相交于点A,B,求面积的最大值21.(12分)已知数列满足,(1)证明是等比数列,(2)求数列的前项和22.(10分)已知抛物线:()的焦点为,点在上,点在的内侧,且的最小值为(1)求的方程;(2)过点的直线与抛物线交于不同的两点,,直线,(为坐标原点)分别交直线于点,记直线,,的斜率分别为,,,若,求的值
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】根据棱柱、棱台、球、正棱锥结构特征依次判断选项即可.【详解】棱柱的侧面都是平行四边形,A不正确;棱台是由对应的棱锥截得的,B正确;不是所有几何体的表面都能展开成平面图形,例如球不能展开成平面图形,C不正确;正棱锥的各条棱长并不是都相等,应该为正棱锥的侧棱长都相等,所以D不正确.故选:B.2、A【解析】由可求得实数的值,再利用充分条件、必要条件的定义判断可得出结论.【详解】若,则,解得或,因此,“”是“”的充分不必要条件.故选:A.3、A【解析】对选项①,根据圆一般方程求解即可判断①错误,对选项②,求出椭圆离心率即可判断②错误,对③,求出抛物线渐近线即可判断③正确,对④,求出双曲线渐近线方程即可判断④错误。【详解】对于①选项,,,故①错误;对于②选项,由题知,所以,所以离心率,故②错误;对于③选项,抛物线化为标准形式得抛物线,故准线方程是,故③正确;对于④选项,双曲线化为标准形式得,所以,焦点在轴上,故渐近线方程是,故④错误.故选:A4、C【解析】由题可知甲不在前2名,乙不在最后一名,然后分类讨论可得答案.【详解】若甲是最后一名,则其他三人没有限制,4人排名即为,若甲是第三名,4人的排名为,所以4人的排名有种情况.故选:C5、D【解析】转化为圆心到椭圆上点的距离的最大值加(半径).【详解】设,圆心为,则,当时,取到最大值,∴最大值为故选:D.【点睛】本题考查圆上点与椭圆上点的距离的最值问题,解题关键是圆上的点转化为圆心,利用圆心到动点距离的最值加(或减)半径得出结论6、C【解析】利用抛物线的定义建立方程即可得到答案.【详解】设抛物线的焦点为F,由抛物线的定义知,即,解得.故选:C.【点晴】本题主要考查利用抛物线的定义计算焦半径,考查学生转化与化归思想,是一道容易题.7、C【解析】根据斜率的公式直接求解即可.【详解】由题可知,,解得.故选:C【点睛】本题主要考查了两点间斜率的计算公式,属于基础题.8、B【解析】由直线方程的性质依次判断各命题即可得出结果.【详解】对于①,直线,令,则,直线在轴上的截距为-,则①错误;对于②,直线的斜率为,倾斜角为,则②正确;对于③直线,由点斜式方程可知直线必过定点,则③正确;对于④,两条平行直线与间的距离为,则④错误.故选:B.9、C【解析】根据法向量的定义可判断出点所构成的图形.【详解】是空间一定点,为空间内任一非零向量,满足条件,所以,构成的图形是经过点,且以为法向量的平面.故选:C.【点睛】本题考查空间中动点的轨迹,考查了法向量定义的理解,属于基础题.10、D【解析】求出导函数,由于函数在区间单调递增,可得在区间上恒成立,求出的范围,再根据充分必要条件的定义即可判断得解.【详解】由题得,函数在区间单调递增,在区间上恒成立,而在区间上单调递减,选项中只有是的必要不充分条件.选项AC是的充分不必要条件,选项B是充要条件.故选:D11、D【解析】根据导函数大于,原函数单调递增;导函数小于,原函数单调递减;即可得出正确答案.【详解】由导函数得图象可得:时,,所以单调递减,排除选项A、B,当时,先正后负,所以在先增后减,因选项C是先减后增再减,故排除选项C,故选:D.12、D【解析】利用椭圆的定义即可得到结果【详解】椭圆,可得,三角形的周长,,所以:周长,由椭圆的第一定义,,所以,周长故选D【点睛】本题考查椭圆简单性质的应用,椭圆的定义的应用,三角形的周长的求法,属于基本知识的考查二、填空题:本题共4小题,每小题5分,共20分。13、【解析】设与平行的直线与相切,求解出此时的方程,则点到直线距离的最大值可根据平行直线间的距离公式求解出.【详解】设与平行的直线,当与椭圆相切时有:,所以,所以,所以,由题意取时,到直线的距离较小此时与(即)的距离为,所以点到直线距离的最小值为,故答案为:.14、【解析】由题意知在上恒成立,从而结合一元二次不等式恒成立问题,可列出关于的不等式,进而可求其取值范围.【详解】解:由题意知,知在上恒成立,则只需,解得.故答案为:.【点睛】本题考查了不等式恒成立问题,考查了运用导数探究函数的单调性.一般地,由增函数可得导数不小于零,由减函数可得导数不大于零.对于一元二次不等式在上恒成立问题,如若在上恒成立,可得;若在上恒成立,可得.15、【解析】根据圆的求得圆心坐标,将圆心坐标代入直线方程,即可求解.【详解】由题意,圆,可得圆心为,因为圆心为在直线上,可得,解得.故答案:.16、【解析】利用累加法即可求出数列的通项公式.【详解】因为,所以,所以,,,…,,把以上个式子相加,得,即,所以.故答案为:.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)答案见解析(2)【解析】(1)首先由,,成等比数列,求出,再由①或②或③求出数列的首项和公差,即可求得的通项公式;(2)求得的通项公式,结合裂项相消法求得.【小问1详解】设等差数列的公差为,由,,成等比数列,可得,即,∵,故,选①:由,可得,解得,所以数列的通项公式为选②:由,可得,即,所以,解得,所以;选③:由,可得,即,所以,解得,所以;【小问2详解】由(1)可得,所以.18、(1);(2)或.【解析】(1)两点式求AB所在直线的斜率,结合点坐标求AB的垂直平分线,根据已知确定圆心、半径即可得圆C的方程;(2)求AB所在直线方程,几何关系求弦长,由三角形面积求点线距离,设M所在直线为,由点线距离公式列方程求参数,进而联立直线与圆C求M的坐标【小问1详解】由题意知,AB所在直线的斜率为,又,中点为,所以线段AB的垂直平分线为,即,联立,得,半径,所以圆C的方程为.【小问2详解】由题意,AB所在直线方程为,即,圆心到直线AB的距离为,故,因为三角形MAB的面积为,则点M到直线AB的距离为,设点M所在直线方程为,所以,所以或,当时,联立得:或,当时,联立,无解;所以或19、(1)(2)【解析】(1)根据已知计算双曲线的基本量,得双曲线焦点坐标及渐近线方程,再用点到直线距离公式得解.(2)直线方程代入双曲线方程,得到关于的一元二次方程,运用韦达定理弦长公式列方程得解.【小问1详解】双曲线离心率为,实轴长为2,,,解得,,,所求双曲线C的方程为;∴双曲线C的焦点坐标为,渐近线方程为,即为,∴双曲线焦点到渐近线的距离为.【小问2详解】设,,联立,,,,,,解得20、(1);(2).【解析】(1)待定系数法求椭圆的方程;(2)设直线的方程为,,,用“设而不求法”表示出三角形OAB的面积.令转化为关于t的函数,利用函数求最值.【详解】(1)依题意得:,∴.方程的根为或.∵椭圆的离心率,∴,∴∴∴椭圆方程为.(2)设直线的方程为,,由,得,则,点到直线的距离为,.令,则..∵在单调递增,∴时.有最小值3.此时有最大值.∴面积的最大值为.21、(1)见解析;(2)【解析】(1)利用定义法证明是一个与n无关的非零常数,从而得出结论;(2)由(1)求出,利用分组求和法求【详解】(1)由得,所以,所以是首项为,公比为的等比数列,,所以,(2)由(1)知的通项公式为;则所以【点睛】本题主要考查等比数列的证明以及分组求和法,属于基础题22、(1)(2)【解析】(1)先求出抛物线的
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 克罗恩病的护理诊断
- 试验室安全教育培训
- 寒号鸟课件2教学课件
- 3-2-2 物质的量在化学方程式计算中的应用 课件 高一上学期化学人教版(2019)必修第一册
- 脑转移瘤目前治疗策略
- 糖尿病前期指导
- 年终合同管理总结
- 保护我的耳朵教案及反思小班
- 荷花淀说课稿
- 汉教学说课稿
- 中华人民共和国突发事件应对法课件
- 小升初小学语文总复习:关联词语、修改病句、修辞、标点符号、积累与运用
- 2024年大学计算机基础考试题库附答案(完整版)
- 中山大学240英语(单考)历年考研真题及详解
- 广东省智慧高速公路建设指南(2023年版)
- 高校思想政治教育生活化研究的开题报告
- 口腔放射工作人员培训
- 建筑施工现场典型安全事故案例
- 小学三年级数学上学期期末考试试卷
- 安全生产应急管理体系建设
- (高清版)DZT 0346-2020 矿产地质勘查规范 油页岩、石煤、泥炭
评论
0/150
提交评论