版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
吉林省长春市重点名校2023-2024学年数学高二上期末考试模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.直线(t为参数)被圆所截得的弦长为()A. B.C. D.2.若直线与直线垂直,则()A6 B.4C. D.3.已知空间四个点,,,,则直线AD与平面ABC所成的角为()A. B.C. D.4.如图,点A的坐标为,点C的坐标为,函数,若在矩形内随机取一点,则此点取自阴影部分的概率等于()A. B.C. D.5.如图所示,向量在一条直线上,且则()A. B.C. D.6.已知命题p:,,则命题p的否定为()A, B.,C., D.,7.“杨辉三角”是中国古代重要的数学成就,它比西方的“帕斯卡三角形”早了300多年,如图是由“杨辉三角”拓展而成的三角形数阵,记为图中虚线上的数1,3,6,10,…构成的数列的第n项,则的值为()A.1225 B.1275C.1326 D.13628.已知数列中,,,是的前n项和,则()A. B.C. D.9.函数的大致图象是()A. B.C. D.10.下列说法中正确的是()A.命题“若,则”的否命题是真命题;B.若为真命题,则为真命题;C.“”是“”的充分条件;D.若命题:“,”,则:“,”11.过圆外一点引圆的两条切线,则经过两切点的直线方程是A. B.C. D.12.函数f(x)=-1+lnx,对∀x0,f(x)≥0成立,则实数a的取值范围是()A(-∞,2] B.[2,+∞)C.(-∞,1] D.[1,+∞)二、填空题:本题共4小题,每小题5分,共20分。13.,若2是与的等比中项,则的最小值为___________.14.某部门计划对某路段进行限速,为调查限速60km/h是否合理,对通过该路段的300辆汽车的车速进行检测,将所得数据按,,,分组,绘制成如图所示频率分布直方图.则________;这300辆汽车中车速低于限速60km/h的汽车有______辆.15.已知函数,则函数在上的最大值为_______16.椭圆C:的左、右焦点分别为,,P为椭圆上异于左右顶点的任意一点,、的中点分别为M、N,O为坐标原点,四边形OMPN的周长为4,则的周长是_____三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知O为坐标原点,双曲线C:(,)的离心率为,点P在双曲线C上,点,分别为双曲线C的左右焦点,.(1)求双曲线C的标准方程;(2)已知点,,设直线PA,PB的斜率分别为,.证明:为定值.18.(12分)已知函数,记f(x)的导数为f′(x).若曲线f(x)在点(1,f(1))处的切线斜率为﹣3,且x=2时y=f(x)有极值,(Ⅰ)求函数f(x)的解析式;(Ⅱ)求函数f(x)在[﹣1,1]上的最大值和最小值19.(12分)在中,其顶点坐标为.(1)求直线的方程;(2)求的面积.20.(12分)已知函数(1)讨论函数的单调性;(2)证明:对任意正整数n,21.(12分)如图,OP为圆锥的高,AB为底面圆O的直径,C为圆O上一点,并且,E为劣弧上的一点,且,.(1)若E为劣弧的中点,求证:平面POE;(2)若E为劣弧的三等分点(靠近点),求平面PEO与平面PEB的夹角的余弦值.22.(10分)在等差数列中,(1)求数列的通项公式;(2)设,求
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】求得直线普通方程以及圆的直角坐标方程,利用弦长公式即可求得结果.【详解】因为直线的参数方程为:(t为参数),故其普通方程为,又,根据,故可得,其表示圆心为,半径的圆,则圆心到直线的距离,则该直线截圆所得弦长为.故选:C.2、A【解析】由两条直线垂直的条件可得答案.【详解】由题意可知,即故选:A.3、A【解析】根据向量法求出线面角即可.【详解】设平面的法向量为,直线AD与平面ABC所成的角为令,则则故选:A【点睛】本题主要考查了利用向量法求线面角,属于中档题.4、A【解析】分别由矩形面积公式与微积分几何意义计算阴影部分和矩形部分的面积,最后由几何概型概率计算公式计算即可.【详解】由已知,矩形的面积为4,阴影部分的面积为,由几何概型公式可得此点取自阴影部分的概率等于,故选:A5、D【解析】根据向量加法的三角形法则得到化简得到故答案为D6、A【解析】根据特称命题的否定是全称命题,结合已知条件,即可求得结果.【详解】因为命题p:,,故命题p的否定为:,.故选:A.7、B【解析】观察前4项可得,从而可求得结果【详解】由题意可得,……,观察规律可得,所以,故选:B8、D【解析】由,得到为递增数列,又由,得到,化简,即可求解.【详解】解:由,得,又,所以,所以,即,所以数列为递增数列,所以,得,即,又由是的前项和,则.故选:D.【点睛】关键点睛:本题考查数列求和问题,关键在于由已知条件得出,运用裂项相消求和法.9、A【解析】由得出函数是奇函数,再求得,,运用排除法可得选项.【详解】法一:由函数,则,所以函数为奇函数,图象关于原点对称,所以排除B;因为,所以排除D;因为,所以排除C,故选:A.【点睛】思路点睛:函数图象的辨识可从以下方面入手:(1)从函数的定义域,判断图象的左右位置;从函数的值域,判断图象的上下位置(2)从函数的单调性,判断图象的变化趋势;(3)从函数的奇偶性,判断图象的对称性;(4)从函数的特征点,排除不合要求的图象.10、C【解析】A.写出原命题的否命题,即可判断其正误;B.根据为真命题可知的p,q真假情况,由此判断的真假;C.看命题“”能否推出“”,即可判断;D.根据含有一个量词的命题的否定的要求,即可判断该命题的正误.【详解】A.命题“若x=y,则sinx=siny”,其否命题为若“,则”为假命题,因此A不正确;B.命题“”为真命题,则p,q中至少有一个为真命题,当二者为一真一假时,为假命题,故B不正确C.命题“若,则”为真命题,故C正确;D.命题:“,”,为特称命题,其命题的否定:“,”,故D错误,故选:C11、A【解析】过圆外一点,引圆的两条切线,则经过两切点的直线方程为,故选12、B【解析】由导数求得的最小值,由最小值非负可得的范围【详解】定义域是,,若,则在上恒成立,单调递增,,不合题意;若,则时,,递减,时,,递增,所以时,取得极小值也是最小值,由题意,解得故选:B二、填空题:本题共4小题,每小题5分,共20分。13、3【解析】根据等比中项列方程,结合基本不等式求得的最小值.【详解】由题可得,则,当且仅当时等号成立.故答案为:14、①.②.【解析】根据个小矩形面积之和为1即可求出的值;根据频率分布直方图可以求出车速低于限速60km/h的频率,从而可求出汽车有多少辆【详解】由解得:这300辆汽车中车速低于限速60km/h的汽车有故答案为:;15、【解析】利用导数单调性求出的单调性,比较极小值与两端点,的大小求出在上的最大值.【详解】因为,则,令,即时,函数单调递增.令,即时,函数单调递减.所以的单调递减区间为,的单调递增区间为,所以在上单调递减,在上单调递增,所以函数的极小值也是函数的最小值.,两端点为,,即最大值为.故答案为:.16、【解析】先证明则四边形OMPN是平行四边形,进而根据椭圆定义求出a,再求出c,最后求出答案.【详解】因为M,O,N分别为的中点,所以,则四边形OMPN是平行四边形,所以,由四边形OMPN的周长为4可知,,即,则,于是的周长是.故答案为:.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)证明见解析【解析】(1)根据题意和双曲线的定义求出,结合离心率求出b,即可得出双曲线的标准方程;(2)设,根据两点的坐标即可求出、,化简计算即可.【小问1详解】由题知:由双曲线的定义知:,又因为,所以,所以所以,双曲线C的标准方程为小问2详解】设,则因为,,所以,所以18、(Ⅰ)f(x)=x3﹣3x2+1;(Ⅱ)最大值为1,最小值为﹣3【解析】(Ⅰ)求导可得f′(x)的解析式,根据导数的几何意义,可得k=f′(1)=-3,又在x=2处有极值,所以f′(2)=0,即可求得a,b的值,即可得答案;(Ⅱ)由(Ⅰ)可得f′(x)的解析式,令f′(x)=0,解得x=0或x=2,讨论f(x)在﹣1<x<0,0<x<1上的单调性,即可求得f(x)的极值,检验边界值,即可得答案.【详解】(Ⅰ)由题意得:f′(x)=3x2+2ax+b,所以k=f′(1)=3+2a+b=﹣3,f′(2)=12+4a+b=0,解得a=﹣3,b=0,所以f(x)=x3﹣3x2+1;(Ⅱ)由(Ⅰ)知,令f′(x)=3x2﹣6x=0,解得x=0或x=2,当﹣1<x<0时,f′(x)>0,f(x)在(﹣1,0)是增函数,当0<x<1时,f′(x)<0,f(x)在(0,1)是减函数,所以f(x)的极大值为f(0)=1,又f(1)=﹣1,f(﹣1)=﹣3,所以f(x)在[﹣1,1]上的最大值为1,最小值为﹣319、(1)(2)【解析】(1)先求出AB的斜率,再利用点斜式写出方程即可;(2)先求出,再求出C到AB的距离即可得到答案.【小问1详解】由已知,,所以直线的方程为,即.【小问2详解】,C到直线AB的距离为,所以的面积为.20、(1)见解析(2)见解析【解析】(1)由,令,得,或,又的定义域为,讨论两个根及的大小关系,即可判定函数的单调性;(2)当时,在,上递减,则,即,由此能够证明【小问1详解】的定义域为,,令,得,或,①当,即时,若,则,递增;若,则,递减;②当,即时,若,则,递减;若,则,递增;若,则,递减;综上所述,当-2<a<0时,f(x)在,单调递减,在单调递增;当a≥0时,f(x)在单调递增,在单调递减.【小问2详解】由(2)知当时,在,上递减,,即,,,,2,3,,,,【点睛】本题考查利用导数研究函数的单调性,本题的关键是令a=1,用已知函数的单调性构造,再令x=恰当地利用对数求和进行解题21、(1)证明见解析(2)【解析】(1)推导出平面,,,由此能证明平面(2)推导出,,以为原点,为轴,为轴,为轴,建立空间直角坐标系,利用向量法能求出二面角的余弦值【小问1详解】证明:为圆锥的高,平面,又平面,,为劣弧的中点,,,平面,平面【小问2详解】解:解:为劣弧的三等分点(靠近点,为底面圆的直径,为圆上一点,并且
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 教育实验课课程设计
- 小学部中队委竞选方案
- 八年级生物实验教学工作总结
- 综合楼维修项目工程施工组织设计方案
- 企业经济管理存在的问题与策略分析
- 2024年出租车行业挂靠管理协议模板版
- 新冠肺炎疫情防控XX学校开学准备工作方案
- 智能交通视频监控系统解决方案
- 产品销售价格保证协议书
- 拖欠农民民工工资问题发言稿
- 紧急供货服务合同案例
- 2024年江苏省淮安市中考英语试题卷(含答案解析)
- 第一课蛋炒饭(课件)奥教版劳动四年级上册
- 2024新一代变电站集中监控系统系列规范第2部分:设计规范
- 《医疗机构工作人员廉洁从业九项准则》制定主题学习课件
- 2024年云南省中考真题试卷物理及答案
- 2024-2030年月子中心行业市场发展分析及发展趋势与投资前景研究报告
- 2024-2030年中国风电运维行业现状调查及未来发展趋势研究研究报告
- 2024语文新教材培训讲座:初中语文教材修订的变与不变
- 2024年学年八年级语文上册 第6课《我的家》教案 新疆教育版
- 新教师自我介绍岗位竞聘
评论
0/150
提交评论