版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
河北省石家庄市辛集中学2023-2024学年数学高二上期末学业质量监测试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.某企业为节能减排,用万元购进一台新设备用于生产.第一年需运营费用万元,从第二年起,每年运营费用均比上一年增加万元,该设备每年生产的收入均为万元.设该设备使用了年后,年平均盈利额达到最大值(盈利额等于收入减去成本),则等于()A. B.C. D.2.已知直线l:过椭圆的左焦点F,与椭圆在x轴上方的交点为P,Q为线段PF的中点,若,则椭圆的离心率为()A. B.C. D.3.“杨辉三角”是中国古代数学文化的瑰宝之一,最早在中国南宋数学家杨辉1261年所著的《详解九章算法》一书中出现.如图所示的杨辉三角中,第8行,第3个数是()第0行1第1行11第2行121第3行1331第4行14641……A.21 B.28C.36 D.564.已知椭圆及以下3个函数:①;②;③,其中函数图象能等分该椭圆面积的函数个数有()A.0个 B.1个C.2个 D.3个5.若直线与曲线有公共点,则b的取值范围是()A. B.C. D.6.在四面体中,为的中点,为棱上的点,且,则()A. B.C. D.7.直线,若的倾斜角为60°,则的斜率为()A. B.C. D.8.已知定义在上的函数的导函数为,且恒有,则下列不等式一定成立的是()A. B.C. D.9.在平面直角坐标系中,椭圆的左、右焦点分别为,,过且垂直于轴的直线与交于,两点,与轴交于点,,则的离心率为()A. B.C. D.10.过抛物线C:y2=4x的焦点F分别作斜率为k1、k2的直线l1、l2,直线l1与C交于A、B两点,直线l2与C交于D、E两点,若|k1·k2|=2,则|AB|+|DE|的最小值为()A.10 B.12C.14 D.1611.如图,在三棱锥中,两两垂直,且,点E为中点,若直线与所成的角为,则三棱锥的体积等于()A. B.C.2 D.12.已知圆C1:(x+3)2+y2=1和圆C2:(x-3)2+y2=9,动圆M同时与圆C1及圆C2相外切,求动圆圆心M的轨迹方程()A.x2-=1(x≤-1) B.x2-=1C.x2-=1(x1) D.-x2=1二、填空题:本题共4小题,每小题5分,共20分。13.如图:二面角等于,是棱上两点,分别在半平面内,,则的长等于__________.14.已知函数,是其导函数,若曲线的一条切线为直线:,则的最小值为___________.15.命题“,”为假命题,则实数a的取值范围是______16.某中学拟从4月16号至30号期间,选择连续两天举行春季运动会,从已往的气象记录中随机抽取一个年份,记录天气结果如下:日期161718192021222324252627282930天气晴阴雨阴阴晴阴晴雨雨阴晴晴晴雨估计运动会期间不下雨的概率为_____________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)保护生态环境,提倡环保出行,节约资源和保护环境,某地区从2016年开始大力提倡新能源汽车,每年抽样1000汽车调查,得到新能源汽车y辆与年份代码x年的数据如下表:年份20162017201820192020年份代码第x年12345新能源汽车y辆305070100110(1)建立y关于x的线性回归方程;(2)假设该地区2022年共有30万辆汽车,用样本估计总体来预测该地区2022年有多少新能源汽车参考公式:回归方程斜率和截距的最小二乘估计公式分别为,18.(12分)已知函数(a是常数).(1)当时,求的单调区间与极值;(2)若,求a的取值范围.19.(12分)已知双曲线的渐近线方程为,且过点(1)求双曲线的方程;(2)过双曲线的一个焦点作斜率为的直线交双曲线于两点,求弦长20.(12分)已知数列的前n项和为,且(1)求证:数列为等比数列;(2)记,求数列的前n项和为21.(12分)已知直线,半径为的圆与相切,圆心在轴上且在直线的右上方.(1)求圆的方程;(2)过点的直线与圆交于两点在轴上方),问在轴正半轴上是否存在定点,使得轴平分?若存在,请求出点的坐标;若不存在,请说明理由.22.(10分)如图,四边形是正方形,平面,,(1)证明:平面平面;(2)若与平面所成角为,求二面角的余弦值
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】设该设备第年的营运费为万元,利用为等差数列可求年平均盈利额,利用基本不等式可求其最大值.【详解】设该设备第年的营运费为万元,则数列是以2为首项,2为公差的等差数列,则,则该设备使用年的营运费用总和为,设第n年的盈利总额为,则,故年平均盈利额为,因为,当且仅当时,等号成立,故当时,年平均盈利额取得最大值4.故选:D.【点睛】本题考查等差数列在实际问题中的应用,注意根据题设条件概括出数列的类型,另外用基本不等式求最值时注意检验等号成立的条件.2、D【解析】由直线的倾斜角为,可得,结合,可推得是等边三角形,可得,计算可得离心率【详解】直线:过椭圆的左焦点,设椭圆的右焦点为,所以,又是的中点,是的中点,所以,又,所以,又,所以是等边三角形,所以,又在椭圆上,所以,所以,所以离心率为,故选:3、B【解析】由题意知第8行的数就是二项式的展开式中各项的二项式系数,可得第8行,第3个数是为,即可求解【详解】解:由题意知第8行的数就是二项式的展开式中各项的二项式系数,故第8行,第3个数是为故选:B4、C【解析】由椭圆的几何性质可得椭圆的图像关于原点对称,因为函数,函数为奇函数,其图像关于原点对称,则①②满足题意,对于函数在轴右侧时,,只有时,,即函数在轴右侧的图像显然不能等分椭圆在轴右侧的图像的面积,又函数为偶函数,其图像关于轴对称,则函数在轴左侧的图像显然也不能等分椭圆在轴左侧的图像的面积,即函数的图像不能等分该椭圆面积,得解.【详解】解:因为椭圆的图像关于原点对称,对于①,函数为奇函数,其图像关于原点对称,即可知的图象能等分该椭圆面积;对于②,函数为奇函数,其图像关于原点对称,即可知的图象能等分该椭圆面积;对于③,对于函数在轴右侧时,,只有时,,即函数在轴右侧的图像(如图)显然不能等分椭圆在轴右侧的图像的面积,又函数为偶函数,其图像关于轴对称,则函数在轴左侧的图像显然也不能等分椭圆在轴左侧的图像的面积,即函数的图像不能等分该椭圆面积,即函数图象能等分该椭圆面积的函数个数有2个,故选C.【点睛】本题考查了椭圆的几何性质、函数的奇偶性及函数的对称性,重点考查了函数的性质,属基础题.5、D【解析】将本题转化为直线与半圆的交点问题,数形结合,求出的取值范围【详解】将曲线的方程化简为即表示以为圆心,以2为半径的一个半圆,如图所示:当直线经过时最大,即,当直线与下半圆相切时最小,由圆心到直线距离等于半径2,可得:解得(舍去),或结合图象可得故选:D.6、A【解析】利用空间向量加法运算,减法运算,数乘运算即可得到答案.【详解】如图故选:A7、D【解析】直线,斜率乘积为,斜线斜率等于倾斜角的正切值.【详解】,,所以.故选:D.8、D【解析】构造函数,用导数判断函数单调性,即可求解.【详解】根据题意,令,其中,则,∵,∴,∴在上为单调递减函数,∴,即,,则错误;,即,则错误;,即,则错误;,即,则正确;故选:.9、B【解析】由题意结合几何性质可得为等腰三角形,且,所以,求出的长,结合椭圆的定义可得答案.【详解】如图,由题意轴,轴,则又为的中点,则为的中点,又,则为等腰三角形,且,所以将代入椭圆方程得,,即所以,则由椭圆的定义可得,即则椭圆的离心率故选:B10、B【解析】设出l1的方程为,与抛物线联立后得到两根之和,两根之积,用弦长公式表达出,同理表达出,利用基本不等式求出的最小值.【详解】抛物线C:y2=4x的焦点F为,直线l1的方程为,则联立后得到,设,,,则,同理设可得:,因为|k1·k2|=2,所以,当且仅当,即或时,等号成立,故选:B11、D【解析】由题意可证平面,取BD的中点F,连接EF,则为直线与所成的角,利用余弦定理求出,根据三棱锥体积公式即可求得体积【详解】如图,∵,点为的中点,∴,,∵,,两两垂直,,∴平面,取BD的中点F,连接EF,∴为直线与所成的角,且,由题意可知,,设,连接AF,则,在中,由余弦定理,得,即,解得,即∴三棱锥的体积故选:12、A【解析】根据双曲线定义求解【详解】,则根据双曲线定义知的轨迹为的左半支故选:A第II卷(非选择题二、填空题:本题共4小题,每小题5分,共20分。13、【解析】由题意,二面角等于,根据,结合向量的运算,即可求解.【详解】由题意,二面角等于,可得向量,,因为,可得,所以.故答案为:14、【解析】设直线与曲线相切的切点为,借助导数的几何意义用表示出m,n即可作答.【详解】设直线与曲线相切的切点为,而,则直线的斜率,于是得,即,由得,而,于是得,即因,则,,当且仅当时取“=”,所以的最小值为.故答案为:【点睛】结论点睛:函数y=f(x)是区间D上的可导函数,则曲线y=f(x)在点处的切线方程为:.15、【解析】写出原命题的否定,再利用二次型不等式恒成立求解作答.【详解】因命题“,”为假命题,则命题“,”为真命题,当时,恒成立,则,当时,必有,解得,所以实数a的取值范围是.故答案为:16、【解析】以每相邻两天为一个基本事件,求出试验的基本事件数,再求出两天都不下雨的基本事件数,利用古典概率公式计算作答.【详解】依题意,以每相邻两天为一个基本事件,如16号与17号、17号与18号为不同的两个基本事件,则从4月16号至30号期间,共有14个基本事件,它们等可能,其中相邻两天不下雨有16与17,19与20,20与21,21与22,22与23,26与27,27与28,28与29,共8个不同结果,所以运动会期间不下雨的概率为.故答案为:三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)46800【解析】(1)第一步分别算第x,y的平均值,第二步利用,即可得到方程.(2)由第一问的结果,带入方程即可算出预估的结果.【小问1详解】,,,因为,所以,所以【小问2详解】预测该地区2022年抽样1000汽车调查中新能源汽车数,当时,,该地区2022年共有30万辆汽车,所以新能源汽车.18、(1)函数在上单调递增,在上单调递减,极小值是,无极大值.(2)【解析】(1)由当,得到,求导,再由,求解;(2)将,转化为成立,令,求其最大值即可.【小问1详解】解:当时,,定义域为,所以,当时,,当时,,所以函数在上单调递增,在上单调递减,所以时,取得极小值是,无极大值.【小问2详解】因为,即成立.设,则,当时,,当时,,所以在上单调递增,在上单调递减,所以,所以,即.19、(1);(2).【解析】(1)根据双曲线渐近线斜率、双曲线过点可构造方程求得,由此可得双曲线方程;(2)由双曲线方程可得焦点坐标,由此可得方程,与双曲线方程联立后,利用弦长公式可求得结果.【小问1详解】由双曲线方程知:渐近线斜率,又渐近线方程为,;双曲线过点,;由得:,双曲线的方程为:;【小问2详解】由(1)得:双曲线的焦点坐标为;若直线过双曲线的左焦点,则,由得:;设,,则,;由双曲线对称性可知:当过双曲线右焦点时,;综上所述:.20、(1)证明见解析;(2).【解析】(1)由已知得,当时,两式作差整理得,根据等比数列的定义可得证;(2)由(1)求得,,再运用错位相减法可求得答案.【小问1详解】证明:因为,……①,所以当时,,当时……②,则①-②可得,所以,因为,所以数列是以2为首项,2为公比的等比数列【小问2详解】解:由(1)知,即,因为所以,则……①,①得……②,①-②得,所以.21、(1);(2)存在,.【解析】(1)设出圆心,根据圆心到直线距离等于半径列方程求出的值可得圆心坐标,进而可得圆的方程;(2)由题可设直线的方程为,与圆的方程联立,利用韦达定理及可得,即得.【小问1详解】由已知可设圆心,则,解得或(舍).所以圆.【小问2详解】由题可设直线的方程为,由,得到:显然成立,所以.①若轴平分,则,所以:,整理得:,将①代入整理得对任意的恒成立,则.∴存在点为时,使得轴平分.22、(1)证明见解析;(2).【解析】(1)连接与交于点O,易得平面,取的中点M,易得为平行四边形,即,得到平面,然后利用面面垂直的判定定理证明;(2)以A为坐标原点,分别为x,y,z轴
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 针对2024年度建筑企业合同风险防范与控制策略3篇
- 设备安装工程合同范本
- 城市房屋买卖合同
- 装修清包工合同样本
- 人教版九年级化学第五单元1质量守恒定律课时3化学方程式分层作业课件
- 2024年度维修保养合同2篇
- 人教版九年级化学第四单元自然界的水新课标素养提升课件
- 骨肿瘤总论课件
- 员工职业生涯管理学说
- 游泳馆责任协议书范本
- GB/T 3516-2024橡胶溶剂抽出物的测定
- 第四单元《10的认识和加减法》-2024-2025学年一年级数学上册单元测试卷(苏教版2024新教材)
- 加油站建设项目环评报告公示
- GB/T 1231-2024钢结构用高强度大六角头螺栓连接副
- 外研版高中英语选择性必修一Unit-3-The-road-to-success
- 中职英语1 基础模块 Unit 3 shopping
- 期末模拟练习(试题)2024-2025学年三年级上册数学苏教版
- MBA考试《英语》历年真题和解析答案
- 中国普通食物营养成分表(修正版)
- 《计算机控制系统》课后题答案-刘建昌
- 新教材苏教版小学六年级音乐上册教案全册
评论
0/150
提交评论