广东省实验中学2023-2024学年高二数学第一学期期末经典试题含解析_第1页
广东省实验中学2023-2024学年高二数学第一学期期末经典试题含解析_第2页
广东省实验中学2023-2024学年高二数学第一学期期末经典试题含解析_第3页
广东省实验中学2023-2024学年高二数学第一学期期末经典试题含解析_第4页
广东省实验中学2023-2024学年高二数学第一学期期末经典试题含解析_第5页
已阅读5页,还剩9页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

广东省实验中学2023-2024学年高二数学第一学期期末经典试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知命题:,;命题:,.则下列命题中为真命题的是()A. B.C. D.2.在正三棱锥S−ABC中,M、N分别是棱SC、BC的中点,且,若侧棱,则正三棱锥S−ABC外接球的表面积是()A. B.C. D.3.过圆外一点引圆的两条切线,则经过两切点的直线方程是A. B.C. D.4.某路口人行横道的信号灯为红灯和绿灯交替出现,红灯持续时间为40秒.若一名行人来到该路口遇到红灯,则至少需要等待18秒才出现绿灯的概率为()A B.C. D.5.设,命题“若,则或”的否命题是()A.若,则或B.若,则或C.若,则且D.若,则且6.设是等差数列的前项和,已知,,则等于()A. B.C. D.7.已知复数满足,其中为虚数单位,则的共轭复数为()A. B.C. D.8.已知向量,且与互相垂直,则k=()A. B.C. D.9.抛物线的顶点在原点,对称轴是x轴,点在抛物线上,则抛物线的方程为()A. B.C. D.10.函数y=ln(1﹣x)的图象大致为()A. B.C D.11.方程表示的曲线是()A.一个椭圆和一条直线 B.一个椭圆和一条射线C.一条射线 D.一个椭圆12.已知双曲线的左焦点为,,为双曲线的左、右顶点,渐近线上的一点满足,且,则双曲线的离心率为()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知圆C:和点,若点N为圆C上一动点,点Q为平面上一点且,则Q点纵坐标的最大值为______14.在的展开式中项的系数为______.(结果用数值表示)15.达•芬奇认为:和音乐一样,数学和几何“包含了宇宙的一切”,从年轻时起,他就本能地把这些主题运用在作品中,布达佩斯的伊帕姆维泽蒂博物馆收藏的达•芬奇方砖,在正六边形上画了具有视觉效果的正方体图案(如图1),把三片这样的达•芬奇方砖形成图2的组合,这个组合表达了图3所示的几何体.若图3中每个正方体的边长为1,则点到直线的距离是__________.16.若函数的递增区间是,则实数______.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知函数.其中e为然对数的底数(1)若,求函数的单调区间;(2)若,讨论函数零点个数18.(12分)椭圆:()的离心率为,递增直线过椭圆的左焦点,且与椭圆交于两点,若,求直线的斜率.19.(12分)已知的三个内角,,的对边分别为,,,且满足.(1)求角的大小;(2)若,,,求的长.20.(12分)在平面直角坐标系中,动点到直线的距离与到点的距离之差为.(1)求动点的轨迹的方程;(2)过点的直线与交于、两点,若的面积为,求直线的方程.21.(12分)已知直线l:,圆C:.(1)当时,试判断直线l与圆C的位置关系,并说明理由;(2)若直线l被圆C截得的弦长恰好为,求k的值.22.(10分)已知圆心在直线上,且过点、(1)求的标准方程;(2)已知过点的直线被所截得的弦长为4,求直线的方程

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】利用基本不等式判断命题的真假,由不等式性质判断命题的真假,进而确定它们所构成的复合命题的真假即可.【详解】由,当且仅当时等号成立,故不存在使,所以命题为假命题,而命题为真命题,则为真,为假,故为假,为假,为真,为假.故选:C2、A【解析】由题意推出平面,即平面,,将此三棱锥补成正方体,则它们有相同的外接球,正方体的对角线就是球的直径,求出直径即可求出球的体积【详解】∵,分别为棱,的中点,∴,∵三棱锥为正棱锥,作平面,所以是底面正三角的中心,连接并延长交与点,∵底面是正三角形,,平面∴,,∵,平面,平面,∴平面,∵平面,∴,∴,又∵,而,且,平面,∴平面,∴平面,∴,因为S−ABC是正三棱锥。所以,以,,为从同一定点出发的正方体三条棱,将此三棱锥补成以正方体,则它们有相同的外接球,正方体的体对角线就是球的直径,,所以.故选:A.3、A【解析】过圆外一点,引圆的两条切线,则经过两切点的直线方程为,故选4、B【解析】由几何概型公式求解即可.【详解】红灯持续时间为40秒,则至少需要等待18秒才出现绿灯的概率为,故选:B5、C【解析】根据否命题的定义直接可得.【详解】根据否命题的定义可得命题“若,则或”的否命题是若,则且,故选:C.6、C【解析】依题意有,解得,所以.考点:等差数列的基本概念.【易错点晴】本题主要考查等差数列的基本概念.在解有关等差数列的问题时可以考虑化归为和等基本量,通过建立方程(组)获得解.即等差数列的通项公式及前项和公式,共涉及五个量,知其中三个就能求另外两个,即知三求二,多利用方程组的思想,体现了用方程的思想解决问题,注意要弄准它们的值.运用方程的思想解等差数列是常见题型,解决此类问题需要抓住基本量、,掌握好设未知数、列出方程、解方程三个环节,常通过“设而不求,整体代入”来简化运算7、D【解析】由复数除法求得后可得其共轭复数【详解】由题意,∴故选:D8、C【解析】利用垂直的坐标表示列方程求解即可.【详解】由与互相垂直得,解得故选:C.9、B【解析】首先根据题意设出抛物线的方程,利用点在曲线上的条件为点的坐标满足曲线的方程,代入求得参数的值,最后得到答案.【详解】解:根据题意设出抛物线的方程,因为点在抛物线上,所以有,解得,所以抛物线的方程是:,故选:B.10、C【解析】根据函数的定义域和特殊点,判断出正确选项.【详解】由,解得,也即函数的定义域为,由此排除A,B选项.当时,,由此排除D选项.所以正确的为C选项.故选:C【点睛】本小题主要考查函数图像识别,属于基础题.11、A【解析】根据题意得到或,即可求解.【详解】由方程,可得或,即或,所以方程表示的曲线为一个椭圆或一条直线.故选:A.12、C【解析】由双曲线的渐近线方程和两点的距离公式,求得点的坐标和,在中,利用余弦定理,求得的关系式,再由离心率公式,计算即可求解.【详解】由题意,双曲线,可得,设在渐近线上,且点在第一象限内,由,解得,即点,所以,在中,由余弦定理可得,可得,即,所以双曲线离心率为.故选:C.【点睛】求解椭圆或双曲线的离心率的三种方法:1、定义法:通过已知条件列出方程组,求得得值,根据离心率的定义求解离心率;2、齐次式法:由已知条件得出关于的二元齐次方程,然后转化为关于的一元二次方程求解;3、特殊值法:通过取特殊值或特殊位置,求出离心率.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】设出点N的坐标,探求出点Q的轨迹,再求出轨迹上在x轴上方且距离x轴最远的点的纵坐标表达式,借助函数最值计算作答.【详解】圆C:的圆心,半径,圆C与x轴相切,依题意,点M在圆C上,设点,则,线段MN中点,因,则点Q的轨迹是以线段MN为直径的圆(除点M,N外),这个轨迹在x轴上方,于是得这个轨迹上的点到x轴的最大距离为:令,于是得,当,即时,,所以Q点纵坐标的最大值为.故答案为:【点睛】结论点睛:圆上的点到定直线距离的最大值等于圆心到该直线距离加半径.14、【解析】先求解出该二项式展开式的通项,然后求解出满足题意的项数值,带入通项即可求解出展开式的系数.【详解】展开式通项为,由题意,令,解得,,所以项的系数为.故答案为:.15、【解析】根据题意,求得△的三条边长,在三角形中求边边上的高线即可.【详解】根据题意,延长交于点,连接,如下所示:在△中,容易知:;同理,,满足,设点到直线的距离为,由等面积法可知:,解得,即点到直线的距离是.故答案为:.16、【解析】求得二次函数的单调增区间,即可求得参数的值.【详解】因为二次函数开口向上,对称轴为,故其单调增区间为,又由题可知:其递增区间是,故.故答案为:.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)单调递减区间为,单调递增区间为和;(2)当时,无零点;当时,有1个零点;当时,有2个零点.【解析】(1)求导,令导数大于零求增区间,令导数小于零求减区间;(2)求导数,分、、a>2讨论函数f(x)单调性和零点即可.【小问1详解】当时,,易知定义域为R,,当时,;当或时,故的单调递减区间为,单调递增区间为和;【小问2详解】当时,x正0负0正单增极大值单减极小值单增当时,恒成立,∴;当时,①当时,,∴无零点;②当时,,∴有1个零点;③当时,,又当时,单调递增,,∴有2个零点;综上所述:当时,无零点;当时,有1个零点;当时,有2个零点【点睛】结论点睛:(1)考查导数的几何意义,往往与解析几何、微积分相联系.(2)利用导数求函数的单调区间,判断单调性;已知单调性,求参数.(3)利用导数求函数的最值(极值),解决生活中的优化问题.(4)考查数形结合思想的应用18、1【解析】根据离心率写出,设出直线为,把直线的方程与椭圆进行联立消,写出韦达定理,再利用,即可解出,进而求出直线的斜率.【详解】,.设递增直线的方程为,把直线的方程与椭圆进行联立:.①,②.③.把③代入①中得④.把④代入②中得...19、(1);(2).【解析】(1)由正弦定理化边为角后,结合两角和的正弦公式、诱导公式可求得;(2)用表示出,然后平方由数量积的运算求得向量的模(线段长度)【详解】(1)因为,所以由正弦定理可得,即,因为,所以,,∵,故;(2)由,得,所以,所以.20、(1);(2)或.【解析】(1)本题首先可以设动点,然后根据题意得出,通过化简即可得出结果;(2)本题首先可排除直线斜率不存在时情况,然后设直线方程为,通过联立方程并化简得出,则,,再然后根据得出,最后根据的面积为即可得出结果.【详解】(1)设动点,因为动点到直线的距离与到点的距离之差为,所以,化简可得,故轨迹方程为.(2)当直线斜率不存在时,其方程为,此时,与只有一个交点,不符合题意,当直线斜率存在时,设其方程为,联立方程,化简得,,令、,则,,因为,所以,因为的面积为,所以,解得或,故直线方程为:或.【点睛】本题考查动点的轨迹方程的求法以及抛物线与直线相交的相关问题的求解,能否根据题意列出等式是求动点的轨迹方程的关键,考查韦达定理的应用,在计算时要注意斜率为这种情况,考查计算能力,考查转化与化归思想,是中档题.21、(1)相离,理由见解析;(2)0或【解析】(1)求出圆心到直线的距离和半径比较即可判断;(2)求出圆心到直线的距离,利用弦长计算即可得出.【详解】(1)圆C:的圆心为,半径为2,当时,线l:,则圆心到直线的距离为,直线l与圆C相离;(2)圆心到直线的距离为,弦长为

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论