广东省湛江市2024届数学高二上期末学业质量监测模拟试题含解析_第1页
广东省湛江市2024届数学高二上期末学业质量监测模拟试题含解析_第2页
广东省湛江市2024届数学高二上期末学业质量监测模拟试题含解析_第3页
广东省湛江市2024届数学高二上期末学业质量监测模拟试题含解析_第4页
广东省湛江市2024届数学高二上期末学业质量监测模拟试题含解析_第5页
已阅读5页,还剩14页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

广东省湛江市2024届数学高二上期末学业质量监测模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知直线与圆交于两点,过分别作的垂线与轴交于两点,则A.2 B.3C. D.42.设,则“”是“直线与直线平行”的()A.充分不必要条件 B.必要不充分条件C.充分必要条件 D.既不充分也不必要条件3.已知点O为坐标原点,抛物线C:的焦点为F,点T在抛物线C的准线上,线段FT与抛物线C的交点为W,,则()A.1 B.C. D.4.在中,、、所对的边分别为、、,若,,,则()A. B.C. D.5.有一个圆锥形铅垂,其底面直径为10cm,母线长为15cm.P是铅垂底面圆周上一点,则关于下列命题:①铅垂的侧面积为150cm2;②一只蚂蚁从P点出发沿铅垂侧面爬行一周、最终又回到P点的最短路径的长度为cm.其中正确的判断是()A.①②都正确 B.①正确、②错误C.①错误、②正确6.已知直线,,,则m值为()A. B.C.3 D.107.阿波罗尼斯约公元前年证明过这样一个命题:平面内到两定点距离之比为常数且的点的轨迹是圆.后人将这个圆称为阿氏圆.若平面内两定点A,B间的距离为2,动点P与A,B距离之比满足:,当P、A、B三点不共线时,面积的最大值是()A. B.2C. D.8.已知点在抛物线:上,点为抛物线的焦点,,点P到y轴的距离为4,则抛物线C的方程为()A. B.C. D.9.已知l,m是两条不同的直线,是两个不同的平面,且,则()A.若,则 B.若,则C.若,则 D.若,则10.若直线过点(1,2),(4,2+),则此直线的倾斜角是()A.30° B.45°C.60° D.90°11.某学校随机抽取了部分学生,对他们每周使用手机的时间进行统计,得到如下的频率分布直方图.则下列说法:①;②若抽取100人,则平均用时13.75小时;③若从每周使用时间在,,三组内的学生中用分层抽样的方法选取8人进行访谈,则应从使用时间在内的学生中选取的人数为3.其中正确的序号是()A.①② B.①③C.②③ D.①②③12.已知抛物线=的焦点为F,M、N是抛物线上两个不同的点,若,则线段MN的中点到y轴的距离为()A.8 B.4C. D.9二、填空题:本题共4小题,每小题5分,共20分。13.已知直线与双曲线无公共点,则双曲线离心率的取值范围是____14.计算:________15.已知函数,若有两个零点,则的范围是______16.某高中高二年级学生在学习完成数学选择性必修一后进行了一次测试,总分为100分.现用分层随机抽样方法从学生的数学成绩中抽取一个样本量为40的样本,再将40个成绩样本数据分为6组:40,50),50,60),60,70),70,80),80,90),90,100,绘制得到如图所示的频率分布直方图.(1)从所给的频率分布直方图中估计成绩样本数据众数,平均数,中位数;(2)在区间40,50)和90,100内的两组学生成绩样本数据中,随机抽取两个进调查,求调查对象来自不同分组的概率.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知是等差数列的前n项和,且,(1)求数列的通项公式;(2)令,求数列的前n项和18.(12分)已知动点M到点F(0,2)的距离,与点M到直线l:y=﹣2的距离相等.(1)求动点M的轨迹方程;(2)若过点F且斜率为1的直线与动点M的轨迹交于A,B两点,求线段AB的长度.19.(12分)如图,在四棱锥P-ABCD中,底面ABCD是一个直角梯形,其中∠BAD=90°,AB∥DC,PA⊥底面ABCD,AB=AD=PA=2,DC=1,点M和点N分别为PA和PC的中点(1)证明:直线DM∥平面PBC;(2)求直线BM和平面BDN所成角的余弦值;(3)求二面角M-BD-N正弦值;(4)求点P到平面DBN距离;(5)设点N在平面BDM内的射影为点H,求线段HA的长20.(12分)已知椭圆上顶点与椭圆的左,右顶点连线的斜率之积为(1)求椭圆C的离心率;(2)若直线与椭圆C相交于A,B两点,,求椭圆C的标准方程21.(12分)如图,已知椭圆:()的左、右焦点分别为、,离心率为.过的直线与椭圆的一个交点为,过垂直于的直线与椭圆的一个交点为,.(1)求椭圆的方程和点的轨迹的方程;(2)若曲线上的动点到直线:的最大距离为,求的值.22.(10分)已知抛物线的焦点为,直线与抛物线交于,两点,且(1)求抛物线的方程;(2)若,是抛物线上一点,过点的直线与抛物线交于,两点(均与点不重合),设直线,的斜率分别为,,求证:为定值

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】由题意,圆心到直线的距离,∴,∵直线∴直线的倾斜角为,∵过分别作的垂线与轴交于两点,∴,故选D.2、A【解析】根据两直线平行的充要条件求出a的值,然后可判断.【详解】当时,,所以两直线平行;若两直线平行,则且,解得或,所以,“”是“直线与直线平行”的充分不必要条件.故选:A3、B【解析】根据平面向量共线的性质,结合抛物线的定义进行求解即可.【详解】由已知得:,该抛物线的准线方程为:,所以设,因为,所以,由抛物线的定义可知:,故选:B4、B【解析】利用正弦定理,以及大边对大角,结合正弦定理,即可求得.【详解】根据题意,由正弦定理,可得:,解得,故可得或,由,可得,故故选:B.5、C【解析】根据圆锥的侧面展开图为扇形,由扇形的面积公式计算即可判断①,在展开图中可知沿着爬行即为最短路径,计算即可判断②.【详解】直径为10cm,母线长为15cm.底面圆周长为.将其侧面展开后得到扇形半径为cm,弧长为,则扇形面积为,①错误.将其侧面展开,则爬行最短距离为,由弧长公式得展开后扇形弧度数为,作,,又,,cm,②正确.故选:C6、C【解析】根据两直线垂直的充要条件得到方程,解得即可;【详解】解:因为,且,所以,解得;故选:C7、C【解析】根据给定条件建立平面直角坐标系,求出点P的轨迹方程,探求点P与直线AB的最大距离即可计算作答.【详解】依题意,以线段AB的中点为原点,直线AB为x轴建立平面直角坐标系,如图,则,,设,因,则,化简整理得:,因此,点P的轨迹是以点为圆心,为半径的圆,点P不在x轴上时,与点A,B可构成三角形,当点P到直线(轴)的距离最大时,的面积最大,显然,点P到轴的最大距离为,此时,,所以面积的最大值是故选:C8、D【解析】由抛物线定义可得,注意开口方向.详解】设∵点P到y轴的距离是4∴∵,∴.得:.故选:D.9、B【解析】由空间中直线与直线、直线与平面、平面与平面的位置关系分析选项A,C,D,由平面与平面垂直的判定定理判定选项D.【详解】选项A.由,,直线l,m可能相交、平行,异面,故不正确.选项B.由,,则,故正确.选项C.由,,直线l,m可能相交、平行,异面,故不正确.选项D.由,,则可能相交,可能平行,故不正确.故选:B10、A【解析】求出直线的斜率,由斜率得倾斜角【详解】由题意直线斜率为,所以倾斜角为故选:A11、B【解析】根据频率分布直方图中小矩形的面积和为1可求出,再求出频率分布直方图的平均值,即为抽取100人的平均值的估计值,再利用分层抽样可确定出使用时间在内的学生中选取的人数为3.【详解】,故①正确;根据频率分布直方图可估计出平均值为,所以估计抽取100人的平均用时13.75小时,②的说法太绝对,故②错误;每周使用时间在,,三组内的学生的比例为,用分层抽样的方法选取8人进行访谈,则应从使用时间在内的学生中选取的人数为,故③正确.故选:B.12、B【解析】过分别作垂直于准线,垂足为,则由抛物线的定义可得,再过MN的中点作垂直于准线,垂足为,然后利用梯形的中位线定理可求得结果【详解】抛物线=的焦点,准线方程为直线如图,过分别作垂直于准线,垂足为,过MN的中点作垂直于准线,垂足为,则由抛物线的定义可得,因为,所以,因为是梯形的中位线,所以,所以线段MN的中点到y轴的距离为4,故选:B二、填空题:本题共4小题,每小题5分,共20分。13、【解析】联立直线得,由无公共点得,进而得,即可求出离心率的取值范围.【详解】联立直线与双曲线可得,整理得,显然,由方程无解可得,即,则,,又离心率大于1,故离心率的取值范围是.故答案为:.14、【解析】根据无穷等比数列的求和公式直接即可求出答案.【详解】.故答案为:.15、【解析】利用导数求出函数的最小值,结合函数的图象列式可求出结果.【详解】,当时,,在上为增函数,最多只有一个零点,不符合题意;当时,令,得,令,得,所以在上为减函数,在上为增函数,所以在时取得极小值为,也是最小值,因为当趋近于正负无穷时,都是趋近于正无穷,所以要使有两个零点,只要,即就可以了.所以的范围是故答案为:.16、(1)众数;平均数,中位数.(2).【解析】(1)按“众数,平均数,中位数”的公式求解.(2)由频率分布直方图得到各区间的频率,再用古典概型求解.【小问1详解】众数取频率分布直方图中最高矩形对应区间的中点75;平均数;因为,所以中位数在区间上,且中位数【小问2详解】由频率分布直方图得出在区间40,50)和90,100内的成绩样本数据分别有4个和2个,从6个样本选2个共有个结果,记事件A=“调查对象来自不同分组”,结果有所以.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)【解析】(1)设等差数列的首项、公差,由列出关于首项、公差的方程组,解方程组可得与的值,从而可得数列的通项公式;(2)由(1)可知,利用裂项相消法可求数列的前n项和.小问1详解】依题意:设等差数列的首项为,公差为,则解得所以数列的通项公式为【小问2详解】由(1)可知因为,所以,所以.18、(1)x2=8y(2)16【解析】小问1:由抛物线的定义可求得动点M的轨迹方程;小问2:可知直线AB的方程为y=x+2,设点A(x1,y1)、B(x2,y2),将直线AB的方程与抛物线的方程联立,求出y1+y2的值,利用抛物线的定义可求得|AB|的值.【小问1详解】由题意点M的轨迹是以F为焦点,直线l为准线的抛物线,所以,则p=4,所以动点M的轨迹方程是x2=8y;【小问2详解】由已知直线AB方程是y=x+2,设A(x1,y1)、B(x2,y2),由得x2﹣8x﹣16=0,,所以x1+x2=8,则y1+y2=x1+x2+4=12,故|AB|=y1+y2+4=1619、(1)证明见解析(2)(3)(4)(5)【解析】(1)以为原点,建立空间直角坐标系,利用向量法,证明与平面的法向量垂直,从而证明直线平面(2)求出平面的法向量,利用向量法,求出直线和平面所成角的余弦值(3)求出平面的法向量和平面的法向量,利用向量法,求出二面角的正弦值(4)求出的坐标,再求出平面的法向量,利用向量法,求出点到平面的距离;(5)设点在平面内的射影为点,从而表示出的坐标,求出到平面的距离,列出方程组,求出点坐标,从而求出的长度.【小问1详解】四棱锥,底面是一个直角梯形,,平面,所以为原点,为轴,为轴,为轴,建立空间直角坐标系,,,,,,,,,设平面的法向量,所以,,取,则,所以,平面,所以直线平面.【小问2详解】,,,设平面的法向量,则,即,取,则,设直线与平面所成的角为,则,所以,所以直线与平面所成角的余弦值为.【小问3详解】设平面的法向量为,则,即,取,得,平面的法向量,设二面角的平面角为,则,所以,所以二面角的正弦值为.【小问4详解】,平面的法向量,所以点到平面的距离为.【小问5详解】设点在平面的射影为点,则,所以点到平面的距离为,根据,得解得,,,或者,,(舍)所以.20、(1)(2)【解析】(1)根据题意,可知,可得,再根据椭圆的性质可得,由此即可求出离心率;(2)将直线与椭圆方程联立,由韦达定理得到,,再根据弦长公式,建立方程,即可求出的值,进而求出椭圆方程.【小问1详解】解:由题意可知,椭圆上顶点坐标为,左右顶点的坐标分别为、,∴,即,则又,∴,所以椭圆的离心率;【小问2详解】解:设,,由得:,∴,,,∴,解得,∴,满足,∴,∴椭圆C的方程为21、(1)椭圆的方程为,点的轨迹的方程为(2)【解析】(1)由题意可得,求出,再结合,求出,从而可得椭圆的方程,设,则由题意可得,坐标代入化简可得点的轨迹的方程,(2)由题意结合点到直线的距离公式可得,设,将直线方程代入椭圆方程中消去,整理利用根与系数的关系,由,可得,因为,代入化简计算可求得答案【小问1详解】由题意得,解得,则,所以椭圆的方程,设,则由题意可得,所以,所以,所以点轨迹的方程为【小问2

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论