版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
广东省名校联盟2024届高二上数学期末经典试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.等差数列的通项公式,数列,其前项和为,则等于()A. B.C. D.2.在单调递减的等比数列中,若,,则()A.9 B.3C. D.3.过抛物线的焦点的直线交抛物线于不同的两点,则的值为A.2 B.1C. D.44.下列导数运算正确的是()A. B.C. D.5.金刚石的成分为纯碳,是自然界中存在的最坚硬物质,它的结构是由8个等边三角形组成的正八面体.若某金刚石的棱长为2,则它外接球的体积为()A. B.C. D.6.已知,则“”是“”的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.即不充分又不必要条件7.已知分别表示随机事件发生的概率,那么是下列哪个事件的概率()A事件同时发生B.事件至少有一个发生C.事件都不发生D事件至多有一个发生8.已知椭圆与双曲线有相同的焦点,且它们的离心率之积为1,则椭圆的标准方程为()A. B.C. D.9.已知,若,则()A. B.2C. D.e10.如图,过抛物线的焦点的直线交抛物线于点、,交其准线于点,若,且,则的值为()A. B.C. D.11.已知圆,直线,直线l被圆O截得的弦长最短为()A. B.C.8 D.912.一辆汽车做直线运动,位移与时间的关系为,若汽车在时的瞬时速度为12,则()A. B.C.2 D.3二、填空题:本题共4小题,每小题5分,共20分。13.设数列的前n项和为,且是6和的等差中项,若对任意的,都有,则的最小值为________14.如图茎叶图记录了A、两名营业员五天的销售量,若A的销售量的平均数比的销售量的平均数多1,则A营业员销售量的方差为___________.15.已知椭圆C:的左右焦点分别为,,O为坐标原点,以下说法正确的是______①过点的直线与椭圆C交于A,B两点,则的周长为8②椭圆C上存在点P,使得③椭圆C的离心率为④P为椭圆上一点,Q为圆上一点,则线段PQ的最大长度为316.如图,在长方体ABCD﹣A'B'C'D'中,点P,Q分别是棱BC,CD上的动点,BC=4,CD=3,CC'=2,直线CC'与平面PQC'所成的角为30°,则△PQC'的面积的最小值是__三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知抛物线的顶点是坐标原点,焦点在轴的正半轴上,是抛物线上的点,点到焦点的距离为1,且到轴的距离是(1)求抛物线的标准方程;(2)假设直线通过点,与抛物线相交于,两点,且,求直线的方程18.(12分)某市对排污水进行综合治理,征收污水处理费,系统对各厂一个月内排出的污水量x吨收取的污水处理费y元,运行程序如图所示:INPUTxIFTHENELSEIFTHENELSEENDIFENDIFPRINTyEND(1)请写出y与x的函数关系式;(2)求排放污水150吨的污水处理费用.19.(12分)如图,在四棱锥P-ABCD中,PA⊥底面ABCD,底面ABCD是矩形,PA=2AD=4,且PC=.点E在PC上.(1)求证:平面BDE⊥平面PAC;(2)若E为PC的中点,求直线PC与平面AED所成的角的正弦值.20.(12分)已知抛物线y2=8x.(1)求出该抛物线的顶点、焦点、准线、对称轴、变量x的范围;(2)以坐标原点O为顶点,作抛物线的内接等腰三角形OAB,|OA|=|OB|,若焦点F是△OAB的重心,求△OAB的周长21.(12分)如图,在三棱柱中,=2,且,⊥底面ABC.E为AB中点(1)求证:平面;(2)求平面与平面CEB夹角的余弦值22.(10分)已知椭圆C:,斜率为的直线l与椭圆C交于A、B两点且(1)求椭圆C的离心率;(2)求直线l的方程
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】根据裂项求和法求得,再计算即可.【详解】解:由题意得====所以.故选:D2、A【解析】利用等比数列的通项公式可得,结合条件即求.【详解】设等比数列的公比为,则由,,得,解得或,又单调递减,故,.故选:A.3、D【解析】本题首先可以通过直线交抛物线于不同的两点确定直线的斜率存在,然后设出直线方程并与抛物线方程联立,求出以及的值,然后通过抛物线的定义将化简,最后得出结果【详解】因为直线交抛物线于不同的两点,所以直线的斜率存在,设过抛物线的焦点的直线方程为,由可得,,因为抛物线的准线方程为,所以根据抛物线的定义可知,,所以,综上所述,故选D【点睛】本题考查了抛物线的相关性质,主要考查了抛物线的定义、过抛物线焦点的直线与抛物线相交的相关性质,考查了计算能力,是中档题4、B【解析】利用基本初等函数的导数和复合函数的导数,依次分析即得解【详解】选项A,,错误;选项B,,正确;选项C,,错误;选项D,,错误故选:B5、A【解析】求得外接球的半径,进而计算出外接球体积.【详解】设,正八面体的棱长为,根据正八面体的性质可知:,所以是外接球的球心,且半径,所以外接球的体积为.故选:A6、B【解析】根据充分条件和必要条件的定义判断即可求解.【详解】由可得或,所以由得不出,故充分性不成立,由可得,故必要性成立,所以“”是“”的必要不充分条件,故选:B.7、C【解析】表示事件至少有一个发生概率,据此得到答案.【详解】分别表示随机事件发生的概率,表示事件至少有一个发生的概率,故表示事件都不发生的概率.故选:C.8、A【解析】计算双曲线的焦点为,离心率,得到椭圆的焦点为,离心率,计算得到答案.【详解】双曲线的焦点为,离心率,故椭圆的焦点为,离心率,即.解得,故椭圆标准方程为:.故选:.【点睛】本题考查了椭圆和双曲线的离心率,焦点,椭圆的标准方程,意在考查学生的计算能力.9、B【解析】求得导函数,则,计算即可得出结果.【详解】,.,解得:.故选:B10、B【解析】分别过点、作准线的垂线,垂足分别为点、,设,根据抛物线的定义以及直角三角形的性质可求得,结合已知条件求得,分析出为的中点,进而可得出,即可得解.【详解】如图,分别过点、作准线的垂线,垂足分别为点、,设,则由己知得,由抛物线的定义得,故,在直角三角形中,,,因为,则,从而得,所以,,则为的中点,从而.故选:B.11、B【解析】先求得直线过定点,再根据当点与圆心连线垂直于直线l时,被圆O截得的弦长最短求解.【详解】因为直线方程,即为,所以直线过定点,因为点在圆的内部,当点与圆心连线垂直于直线l时,被圆O截得的弦长最短,点与圆心(0,0)的距离为,此时,最短弦长为,故选:B12、D【解析】首先求出函数的导函数,依题意可得,即可解得;【详解】解:因为,所以又汽车在时的瞬时速度为12,即即,解得故选:D【点睛】本题考查导数在物理中的应用,属于基础题.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】先根据和项与通项关系得通项公式,再根据等比数列求和公式得,再根据函数单调性得取值范围,即得取值范围,解得结果.【详解】因为是6和的等差中项,所以当时,当时,因此当为偶数时,当为奇数时,因此因为在上单调递增,所以故答案为:【点睛】本题考查根据和项求通项、等比数列定义、等比数列求和公式、利用函数单调性求值域,考查综合分析求解能力,属较难题.14、44【解析】先根据题意求出x的值,进而利用方差公式求出A营业员销售量的方差.【详解】由A的平均数比的平均数多1知,A的总量比的总量多5,所以,A的平均数为17,方差为.故答案为:4415、①②④【解析】根据椭圆的几何性质结合的周长计算可判断①;根据,可通过以为直径作圆,是否与椭圆相交判断②;求出椭圆的离心率可判断③;计算椭圆上的点到圆心的距离的最大值,即可判断④.【详解】对于①,由题意知:的周长等于,故①正确;对于②,,故以为直径作圆,与椭圆相交,交点即设为P,故椭圆C上存在点P,使得,故②正确;对于③,,故③错误;对于④,设P为椭圆上一点,坐标为,则,故,因为,所以的最大值为2,故线段PQ的最大长度为2+1=3,故④正确,故答案为:①②④.16、8【解析】设三棱锥C﹣C′PQ的高为h,CQ=x,CP=y,由体积法求得的关系,由直线CC’与平面C’PQ成的角为30°,得到xy≥8,再由VC﹣C′PQ=VC′﹣CPQ,能求出△PQC'的面积的最小值【详解】解:设三棱锥C﹣C′PQ的高为h,CQ=x,CP=y,由长方体性质知两两垂直,所以,,,,,所以,由得,所以,∵直线CC’与平面C’PQ成的角为30°,∴h=2,∴,,∴xy≥8,再由体积可知:VC﹣C′PQ=VC′﹣CPQ,得,S△C′PQ=xy,∴△PQC'的面积的最小值是8故答案为:8三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2)【解析】(1)根据抛物线的定义,结合到焦点、轴的距离求,写出抛物线方程.(2)直线的斜率不存在易得与不垂直与题设矛盾,设直线方程联立抛物线方程,应用韦达定理求,,进而求,由题设向量垂直的坐标表示有求直线方程即可.【详解】(1)由己知,可设抛物线的方程为,又到焦点的距离是1,∴点到准线的距离是1,又到轴的距离是,∴,解得,则抛物线方程是(2)假设直线的斜率不存在,则直线的方程为,与联立可得交点、的坐标分别为,,易得,可知直线与直线不垂直,不满足题意,故假设不成立,∴直线的斜率存在.设直线为,整理得,设,,联立直线与抛物线的方程得,消去,并整理得,于是,,∴,又,因此,即,∴,解得或当时,直线的方程是,不满足,舍去当时,直线的方程是,即,∴直线的方程是18、(1);(2)1400(元).【解析】(1)根据已知条件即可容易求得函数关系式;(2)根据(1)中所求函数关系式,令,求得函数值即可.【小问1详解】根据题意,得:当时,;当时,;当时,.即.【小问2详解】因为,故,故该厂应缴纳污水处理费1400元.19、(1)证明见解析;(2)【解析】(1)根据题意可判断出ABCD是正方形,从而可得,再根据,由线面垂直的判定定理可得平面PAC,然后由面面垂直的判定定理即可证出;(2)由、、两两垂直可建立空间直角坐标系,利用向量法即可求出直线PC与平面AED所成的角的正弦值.【小问1详解】因为PA⊥底面ABCD,PA=2AD=4,PC=,所以,,即ABCD是正方形,所以,而PA⊥底面ABCD,所以,又,所以平面PAC,而平面BDE,所以平面BDE⊥平面PAC【小问2详解】由题可知、、两两垂直,建系如图,,0,,,2,,,0,,,2,,,1,,,,,,1,,,2,,设平面的一个法向量为,则,,即,取,0,,所以直线与平面所成的角的正弦值为20、(1)见解析;(2)2+4.【解析】(1)由抛物线的简单几何性质易得结果;(2)由|OA|=|OB|可知AB⊥x轴,又焦点F是△OAB的重心,则|OF|=|OM|=2.设A(3,m),代入y2=8x即可得到△OAB的周长【详解】(1)抛物线y2=8x的顶点、焦点、准线、对称轴、变量x的范围分别为(0,0),(2,0),x=-2,x轴,x≥0.(2)如图所示.由|OA|=|OB|可知AB⊥x轴,垂足为点M,又焦点F是△OAB的重心,则|OF|=|OM|.因为F(2,0),所以|OM|=|OF|=3.所以M(3,0).故设A(3,m),代入y2=8x得m2=24.所以m=2或m=-2.所以A(3,2),B(3,-2)所以|OA|=|OB|=.所以△OAB的周长为2+4.【点睛】本题考查了抛物线简单性质的应用,解题关键利用好三角形重心的性质,属于中档题.21、(1)证明见解析;(2).【解析】(1)连接与交于点O,连接OE,得到,再利用线面平行的判定定理证明即可;(2)根据,底面,建立空间直角坐标系,求得平面的一个法向量,再根据底面,得到平面一个法向量,然后由夹角公式求解.【小问1详解】如
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年度房屋买卖合同标的及属性确认书
- 2024年度信息技术系统集成及安装服务合同
- 2024年度体育赛事赞助合同:某国际体育赛事赞助协议
- 2024年度城市规划!河南一地政府与设计院合同
- 2024年度度民警被装采购项目质量保证合同
- 2024年度技术咨询合同标的、咨询领域与服务期限
- 2024年度影视制作内部承包合同协议
- 医用杀寄生虫药市场发展现状调查及供需格局分析预测报告
- 2024年度混凝土泵送工程进度与成本控制合同
- 2024年度版权买卖合同标的约定
- 眼镜店营业员工作总结
- 你演我猜规则介绍+题目
- 村级三务公开培训课件
- 小学数学-20以内进位加法 和复习教学设计学情分析教材分析课后反思
- 消防专业职业生涯规划
- 口腔医学生涯规划报告总结
- 酶工程制药课件
- 《总装工艺培训资料》课件
- 《无土栽培技术》课件
- 城市更新前期调研报告
- 2024年国药集团招聘笔试参考题库含答案解析
评论
0/150
提交评论