![河北省衡水中学2024届高二上数学期末复习检测模拟试题含解析_第1页](http://file4.renrendoc.com/view/fa260e3341c856703e792f165b0dfbdb/fa260e3341c856703e792f165b0dfbdb1.gif)
![河北省衡水中学2024届高二上数学期末复习检测模拟试题含解析_第2页](http://file4.renrendoc.com/view/fa260e3341c856703e792f165b0dfbdb/fa260e3341c856703e792f165b0dfbdb2.gif)
![河北省衡水中学2024届高二上数学期末复习检测模拟试题含解析_第3页](http://file4.renrendoc.com/view/fa260e3341c856703e792f165b0dfbdb/fa260e3341c856703e792f165b0dfbdb3.gif)
![河北省衡水中学2024届高二上数学期末复习检测模拟试题含解析_第4页](http://file4.renrendoc.com/view/fa260e3341c856703e792f165b0dfbdb/fa260e3341c856703e792f165b0dfbdb4.gif)
![河北省衡水中学2024届高二上数学期末复习检测模拟试题含解析_第5页](http://file4.renrendoc.com/view/fa260e3341c856703e792f165b0dfbdb/fa260e3341c856703e792f165b0dfbdb5.gif)
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
河北省衡水中学2024届高二上数学期末复习检测模拟试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知数列满足,,则()A. B.C. D.2.已知圆,则圆C关于直线对称的圆的方程为()A. B.C. D.3.如图,棱长为1的正方体中,为线段上的动点,则下列结论错误的是A.B.平面平面C.的最大值为D.的最小值为4.已知正三棱柱的侧棱长与底面边长相等,则AB1与侧面ACC1A1所成角的正弦值等于A. B.C. D.5.五行学说是中华民族创造的哲学思想.古代先民认为,天下万物皆由五种元素组成,分别是金、木、水、火、土,彼此之间存在如图所示的相生相克关系.若从金、木、水、火、土五种元素中任取两种,则这两种元素恰是相生关系的概率是()A. B.C. D.6.在等差数列中,为数列的前项和,,,则数列的公差为()A. B.C.4 D.7.动点P,Q分别在抛物线和圆上,则的最小值为()A. B.C. D.8.已知直线,,若,则实数()A. B.C.1 D.29.已知空间向量,,若,则实数的值是()A. B.0C.1 D.210.在中,角,,所对的边分别为,,,若,则的形状为()A.锐角三角形 B.直角三角形C.钝角三角形 D.不确定11.已知为虚数单位,复数是纯虚数,则()A. B.4C.3 D.212.某工厂去年的电力消耗为千瓦,由于设各更新,该工厂计划每年比上一年的电力消耗减少,则从今年起,该工厂第5年消耗的电力为()A.m千瓦 B.m千瓦C.m千瓦 D.m千瓦二、填空题:本题共4小题,每小题5分,共20分。13.设函数f(x)在R上满足f(x)+xf′(x)>0,若a=(30.3)f(30.3),b=(logπ3)·f(logπ3),则a与b的大小关系为________14.已知,为双曲线的左、右焦点,过作的垂线分别交双曲线的左、右两支于B,C两点(如图).若,则双曲线的渐近线方程为______15.椭圆的右焦点是,两点是椭圆的左顶点和上顶点,若△是直角三角形,则椭圆的离心率是________.16.若向量,,,且向量,,共面,则______三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知椭圆的左、右两个焦点,,离心率,短轴长为21求椭圆的方程;2如图,点A为椭圆上一动点非长轴端点,的延长线与椭圆交于B点,AO的延长线与椭圆交于C点,求面积的最大值18.(12分)已知椭圆C:的离心率为,点为椭圆C上一点(1)求椭圆C的方程;(2)若M,N是椭圆C上的两个动点,且的角平分线总是垂直于y轴,求证:直线MN的斜率为定值19.(12分)已知等差数列的前项和为,满足,.(1)求数列的通项公式与前项和;(2)求的值.20.(12分)已知椭圆的下焦点为、上焦点为,其离心率.过焦点且与x轴不垂直的直线l交椭圆于A、B两点(1)求实数m的值;(2)求△ABO(O为原点)面积的最大值21.(12分)已知等差数列的前n项和为,且,(1)求数列的通项公式;(2)若,求k的值22.(10分)甲、乙两人参加普法知识竞赛,共有5题,选择题(1)甲、乙两人中有一个抽到选择题(2)甲、乙两人中至少有一人抽到选择题
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】根据递推关系依次求出即可.【详解】,,,,,.故选:A.2、B【解析】求得圆的圆心关于直线的对称点,由此求得对称圆的方程.【详解】设圆的圆心关于直线的对称点为,则,所以对称圆的方程为.故选:B3、C【解析】∵,,∴面,面,∴,A正确;∵平面即为平面,平面即为平面,且平面,∴平面平面,∴平面平面,∴B正确;当时,为钝角,∴C错;将面与面沿展成平面图形,线段即为的最小值,在中,,利用余弦定理解三角形得,即,∴D正确,故选C考点:立体几何中的动态问题【思路点睛】立体几何问题的求解策略是通过降维,转化为平面几何问题,具体方法表现为:
求空间角、距离,归到三角形中求解;2.对于球的内接外切问题,作适当的截面,既要能反映出位置关系,又要反映出数量关系;求曲面上两点之间的最短距离,通过化曲为直转化为同一平面上两点间的距离4、C【解析】过作,连接,由于,故平面,所以所求直线与平面所成的角为,设棱长为,则,故,.点睛:本题主要考查空间立体几何直线与平面的位置关系,考查直线与平面所成的角,考查线面垂直的证明方法和常见几何体的结构特征.由于题目所给几何体为直三棱柱,故侧棱和底面垂直,这是一个重要的隐含条件,通过作交线的垂线,即可得到高,由此作出二面角的平面角.5、C【解析】先计算从金、木、水、火、土五种元素中任取两种的所有基本事件数,再计算其中两种元素恰是相生关系的基本事件数,利用古典概型概率公式,即得解【详解】由题意,从金、木、水、火、土五种元素中任取两种,共有(金,木),(金,水),(金,火),(金,土),(木,水),(木,火),(木土),(水,火),(水,土),(火,土),共10个基本事件,其中两种元素恰是相生关系包含(金,木),(木,土),(土,水),(水,火)(火,金)共5个基本事件,所以所求概率.故选:C6、A【解析】由已知条件列方程组求解即可【详解】设等差数列的公差为,因为,,所以,解得,故选:A7、B【解析】设,根据两点间距离公式,先求得P到圆心的最小距离,根据圆的几何性质,即可得答案.【详解】设,圆化简为,即圆心为(0,4),半径为,所以点P到圆心的距离,令,则,令,,为开口向上,对称轴为的抛物线,所以的最小值为,所以,所以的最小值为.故选:B8、D【解析】根据两条直线的斜率相等可得结果.【详解】因为直线,,且,所以,故选:D.9、C【解析】根据空间向量垂直的性质进行求解即可.【详解】因为,所以,因此有.故选:C10、C【解析】由正弦定理得出,再由余弦定理得出,从而判断为钝角得出的形状.【详解】因为,所以,所以,所以的形状为钝角三角形.故选:C11、C【解析】化简复数得,由其为纯虚数求参数a,进而求的模即可.【详解】由纯虚数,∴,解得:,则,故选:C12、D【解析】根据等比数列的定义进行求解即可.【详解】因为去年的电力消耗为千瓦,工厂计划每年比上一年的电力消耗减少,所以今年的电力消耗为,因此从今年起,该工厂第5年消耗的电力为,故选:D二、填空题:本题共4小题,每小题5分,共20分。13、a>b【解析】构造函数F(x)=xf(x),利用F(x)的单调性求解即可.【详解】设函数F(x)=xf(x),∴F′(x)=f(x)+xf′(x)>0,∴F(x)=xf(x)在R上为增函数,又∵30.3>1,logπ3<1,∴30.3>logπ3,∴F(30.3)>F(logπ3),∴(30.3)f(30.3)>(logπ3)f(logπ3),∴a>b.故答案为:a>b.14、【解析】根据双曲线的定义先计算出,,注意到图中渐近线,于是利用两种不同的表示法列方程求解.【详解】,则,由双曲线的定义及在右支上,,又在左支上,则,则,在中,由余弦定理,,而图中渐近线,于是,得,于是,不妨令,化简得,解得,渐近线就为:.故答案为:.15、【解析】由题设易知,应用斜率的两点式及椭圆参数关系可得,进而求椭圆离心率.【详解】由题设,,,,又△是直角三角形,显然,所以,可得,则,解得,又,所以.故答案为:.16、##【解析】由向量共面的性质列出方程组求解即可.【详解】因为,,共面,所以存在实数x,y,使得,得,解得∴故答案为:三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)椭圆的标准方程为(2)面积的最大值为【解析】(1)由题意得,再由,标准方程为;(2)①当的斜率不存在时,不妨取;②当的斜率存在时,设的方程为,联立方程组,又直线的距离点到直线的距离为面积的最大值为.试题解析:(1)由题意得,解得,∵,∴,,故椭圆的标准方程为(2)①当直线的斜率不存在时,不妨取,故;②当直线的斜率存在时,设直线的方程为,联立方程组,化简得,设点到直线的距离因为是线段的中点,所以点到直线的距离为,∴综上,面积的最大值为.【点睛】本题主要考查椭圆的标准方程及其性质、点到直线的距离、弦长公式和三角形面积公式等知识,涉及函数与方程思想、数形结合思想分类与整合、转化与化归等思想,并考查运算求解能力和逻辑推理能力,属于较难题型.第一小题由题意由方程思想建立方程组求得标准方程为;(2)利用分类与整合思想分当的斜率不存在与存在两种情况求解,在斜率存在时,由舍而不求法求得,再求得点到直线的距离为面积的最大值为.18、(1);(2)证明见解析.【解析】(1)根据椭圆的离心率公式,结合代入法进行求解即可;(2)根据角平分线的性质,结合一元二次方程根与系数关系、斜率公式进行求解即可.【小问1详解】椭圆的离心率,又,∴∵椭圆C:经过点,解得,∴椭圆C的方程为;【小问2详解】∵∠MPN的角平分线总垂直于y轴,∴MP与NP所在直线关于直线对称.设直线MP的斜率为k,则直线NP的斜率为∴设直线MP的方程为,直线NP的方程为设点,由消去y,得∵点在椭圆C上,则有,即同理可得∴,又∴直线MN的斜率为【点睛】关键点睛:由∠MPN的角平分线总垂直于y轴,得到MP与NP所在直线关于直线对称是解题的关键.19、(1),;(2).【解析】(1)设出等差数列的公差,借助前项和公式列式计算作答.(2)由(1)的结论借助裂项相消去求解作答.【小问1详解】设等差数列的公差为,因,,则,解得,于是得,,所以数列的通项公式为,前项和.【小问2详解】由(1)知,,所以.20、(1)2;(2)﹒【解析】(1)根据已知条件得,,结合离心率,即可解得答案(2)设直线的方程,与椭圆方程联立,利用弦长公式以及三角形的面积公式,基本不等式即可得出答案【小问1详解】由题意可得,,,∵离心率,∴,∵,∴,解得【小问2详解】由(1)知,椭圆,上焦点,设,,,,直线的方程为:,联立,得,∴,,∴,∴,∴,当且仅当,即时等号成立,∴为原点)面积的最大值为21、(1)(2)10【解析】(1)设等差数列的公差为d,利用已知建立方程组,解之可求得数列的通项公式;(2)利用等差数列的前项和公式,化简即可求解.【小问1详解】解:设等差数列的公差为d,由已知,,得,解得,则;小问2详解】解:由
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 单一来源采购合同范本
- 房屋租赁的合同范本
- 农产品采购合同范本专业版
- 钢材采购合同书-供需合同
- 社交电商平台的用户信息安全保障
- 生物科技企业投资风险评估与决策支持
- 现代办公管理技术与管理相结合的智慧
- 2024-2025学年高中物理第七章第5节探究弹性势能的表达式练习含解析新人教版必修2
- 现代厂区的人性化空间设计
- 电信业务与移动支付携手共进开启数字化生活新篇章
- 《纺织服装材料》课件-4纱线的结构与性能
- 2024过敏性休克抢救指南(2024)课件干货分享
- 09BD13建筑物防雷装置
- 医疗行业提高医院服务质量的改进方案三篇
- GB/T 44122-2024工业互联网平台工业机理模型开发指南
- 预应力空心方桩打桩工程监理实施细则
- 飞机仪电与飞控系统原理智慧树知到期末考试答案章节答案2024年中国人民解放军海军航空大学
- 数据分析应用项目化教程(Python) 课件 项目1 认识数据分析
- DL-T-5759-2017配电系统电气装置安装工程施工及验收规范
- JJG(交通) 192-2023 负压筛析仪
- 城市更新模式探讨
评论
0/150
提交评论