




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
广东省梅州市2023-2024学年高二上数学期末调研模拟试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.的二项展开式中,二项式系数最大的项是第()项.A.6 B.5C.4和6 D.5和72.已知点,是椭圆:的左、右焦点,是的左顶点,点在过且斜率为的直线上,为等腰三角形,且,则的离心率为()A. B.C. D.3.命题“若,则”的逆命题、否命题、逆否命题中是真命题的个数为()A.0个 B.1个C.2个 D.3个4.设双曲线的方程为,过抛物线的焦点和点的直线为.若的一条渐近线与平行,另一条渐近线与垂直,则双曲线的方程为()A. B.C. D.5.试在抛物线上求一点,使其到焦点的距离与到的距离之和最小,则该点坐标为A. B.C. D.6.若圆与直线相切,则()A.3 B.或3C. D.或7.如图,在平行六面体中,为与的交点,若,,,则的值为()A. B.C. D.8.在空间直角坐标系中,点关于平面的对称点的坐标是()A. B.C. D.9.执行如图的程序框图,输出的S的值为()A. B.0C.1 D.210.如图,矩形BDEF所在平面与正方形ABCD所在平面互相垂直,,,点P在线段EF上.给出下列命题:①存在点P,使得直线平面ACF;②存在点P,使得直线平面ACF;③直线DP与平面ABCD所成角的正弦值的取值范围是;④三棱锥的外接球被平面ACF所截得的截面面积是.其中所有真命题的序号()A.①③ B.①④C.①②④ D.①③④11.已知抛物线的焦点为,点在抛物线上,且,则的横坐标为()A.1 B.C.2 D.312.已知椭圆C的焦点为,过F2的直线与C交于A,B两点.若,,则C的方程为A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.过点且与直线平行的直线的方程是______.14.如图的形状出现在南宋数学家杨辉所著的《详解九章算法·商功》中,后人称为“三角垛”.“三角垛”的最上面一层有1个球,第二层有3个球,第三层有6个球…….设各层球数构成一个数列,其中,,,则______15.过抛物线的焦点作互相垂直的两条直线,分别交抛物线与A,C,B,D四点,则四边形ABCD面积的最小值为___________16.若平面内两条直线,平行,则实数______三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)在下面两个条件中任选一个条件,补充在后面问题中的横线上,并完成解答.条件①:展开式前三项的二项式系数的和等于37;条件②:第3项与第7项的二项式系数相等;问题:在二项式的展开式中,已知__________.(1)求展开式中二项式系数最大的项;(2)设,求的值;(3)求的展开式中的系数.18.(12分)已知函数,求(1)(2)(3)曲线在处的切线方程19.(12分)男子10米气步枪比赛规则如下:在资格赛中,射手在距离靶子10米处,采用立姿,在105分钟内射击60发子弹,总环数排名前8名的射手进入决赛;在决赛中,每位射手仅射击10发子弹.已知甲乙两名运动员均进入了决赛,资格赛中的环数情况整理得下表:环数频数678910甲2352327乙5502525以各人这60发子弹环数的频率作为决赛中各发子弹环数发生的概率,甲乙两人射击互不影响(1)求甲运动员在决赛中前2发子弹共打出1次10环的概率;(2)决赛打完第9发子弹后,甲比乙落后2环,求最终甲能战胜乙(甲环数大于乙环数)的概率20.(12分)已知数列满足,.(1)证明:数列为等差数列.(2)求数列的前项和.21.(12分)已知圆C过点,,它与x轴的交点为,,与y轴的交点为,,且.(1)求圆C的标准方程;(2)若,直线,从点A发出的一条光线经直线l反射后与圆C有交点,求反射光线所在的直线的斜率的取值范围.22.(10分)在①;②;③;这三个条件中任选一个,补充在下面的问题中,然后解答补充完整的题.注:若选择多个条件分别解答,则按第一个解答计分.已知,且(只需填序号).(1)求的值;(2)求展开式中的奇数次幂的项的系数之和
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】由二项展开的中间项或中间两项二项式系数最大可得解.【详解】因为二项式展开式一共11项,其中中间项的二项式系数最大,易知当r=5时,最大,即二项展开式中,二项式系数最大的为第6项.故选:A2、D【解析】设,先求出点,得,化简即得解【详解】由题意可知椭圆的焦点在轴上,如图所示,设,则,∵为等腰三角形,且,∴.过作垂直轴于点,则,∴,,即点.∵点在过点且斜率为的直线上,∴,解得,∴.故选:D【点睛】方法点睛:求椭圆的离心率常用的方法有:(1)公式法(求出椭圆的代入离心率的公式即得解);(2)方程法(通过已知找到关于离心率的方程解方程即得解).3、B【解析】先判断出原命题和逆命题的真假,进而根据互为逆否的两个命题同真或同假最终得到答案.【详解】“若a=0,则ab=0”,命题为真,则其逆否命题也为真;逆命题为:“若ab=0,则a=0”,显然a=1,b=0时满足ab=0,但a≠0,即逆命题为假,则否命题也为假.故选:B.4、D【解析】由抛物线的焦点可求得直线的方程为,即得直线的斜率为,再根据双曲线的渐近线的方程为,可得,即可求出,得到双曲线的方程【详解】由题可知,抛物线焦点为,所以直线的方程为,即直线的斜率为,又双曲线的渐近线的方程为,所以,,因为,解得故选:【点睛】本题主要考查抛物线的简单几何性质,双曲线的几何性质,以及直线与直线的位置关系的应用,属于基础题5、A【解析】由题意得抛物线的焦点为,准线方程为过点P作于点,由定义可得,所以,由图形可得,当三点共线时,最小,此时故点的纵坐标为1,所以横坐标.即点P的坐标为.选A点睛:与抛物线有关的最值问题的解题策略该类问题一般解法是利用抛物线的定义,实现由点到点的距离与点到直线的距离的转化(1)将抛物线上的点到准线的距离转化为该点到焦点的距离,构造出“两点之间线段最短”,使问题得解;(2)将抛物线上的点到焦点的距离转化为点到准线的距离,利用“与直线上所有点的连线中的垂线段最短”解决6、B【解析】根据圆与与直线相切,利用圆心到直线的距离等于半径求解.【详解】圆的标准方程为:,则圆心为,半径为,因为圆与与直线相切,所以圆心到直线的距离等于半径,即,解得或,故选:B7、D【解析】将用基底表示,然后利用空间向量数量积的运算性质可求得结果.【详解】因为四边形为平行四边形,且,则为的中点,,则.故选:D8、C【解析】根据空间里面点关于面对称的性质即可求解.【详解】在空间直角坐标系中,点关于平面的对称点的坐标是.故选:C.9、A【解析】直接求出的值即可.【详解】解:由题得,程序框图就是求,由于三角函数的最小正周期为,,,所以.故选:A10、D【解析】当点P是线段EF中点时判断①;假定存在点P,使得直线平面ACF,推理导出矛盾判断②;利用线面角的定义转化列式计算判断③;求出外接圆面积判断④作答.【详解】取EF中点G,连DG,令,连FO,如图,在正方形ABCD中,O为BD中点,而BDEF是矩形,则且,即四边形DGFO是平行四边形,即有,而平面ACF,平面ACF,于是得平面ACF,当点P与G重合时,直线平面ACF,①正确;假定存在点P,使得直线平面ACF,而平面ACF,则,又,从而有,在中,,DG是直角边EF上中线,显然在线段EF上不存在点与D连线垂直于DG,因此,假设是错的,即②不正确;因平面平面,平面平面,则线段EF上的动点P在平面上的射影在直线BD上,于是得是直线DP与平面ABCD所成角的,在矩形BDEF中,当P与E不重合时,,,而,则,当P与E重合时,,,因此,,③正确;因平面平面,平面平面,,平面,则平面,,在中,,显然有,,由正弦定理得外接圆直径,,三棱锥的外接球被平面ACF所截得的截面是的外接圆,其面积为,④正确,所以所给命题中正确命题的序号是①③④.故选:D【点睛】结论点睛:两个平面互相垂直,则一个平面内任意一点在另一个平面上的射影都在这两个平面的交线上.11、C【解析】利用抛物线的定义转化为到准线的距离,即可求得.【详解】抛物线的焦点坐标为,准线方程为,,∴,故选:C.12、B【解析】由已知可设,则,得,在中求得,再在中,由余弦定理得,从而可求解.【详解】法一:如图,由已知可设,则,由椭圆的定义有.在中,由余弦定理推论得.在中,由余弦定理得,解得所求椭圆方程为,故选B法二:由已知可设,则,由椭圆的定义有.在和中,由余弦定理得,又互补,,两式消去,得,解得.所求椭圆方程为,故选B【点睛】本题考查椭圆标准方程及其简单性质,考查数形结合思想、转化与化归的能力,很好的落实了直观想象、逻辑推理等数学素养二、填空题:本题共4小题,每小题5分,共20分。13、【解析】设出直线的方程,代入点的坐标,求出直线的方程.【详解】设过点且与直线平行的直线的方程为,将代入,则,解得:,所以直线的方程为.故答案为:14、15【解析】由分析可知每次小球数量刚好是等差数列的求和,最后直接公式即可算出答案.【详解】由题意可知,,所以,故答案为:1515、512【解析】设出直线的方程与抛物线方程联立,结合抛物线的定义、一元二次方程根与系数的关系进行求解即可.【详解】抛物线焦点的坐标为,由题意可知:直线存在斜率且不为零,所以设直线的斜率为,所以直线的方程为,与抛物线的方程联立得:,设,所以,由抛物线的定义可知:,因为直线互相垂直,所以直线的斜率为,同理可得:,所以四边形ABCD面积为:,当且仅当时取等号,即当时取等号,故答案为:51216、-1或2【解析】根据两直线平行,利用直线平行的条件列出方程解得答案.【详解】∵,∴,解得或,经验证都符合题意,故答案为:-1或2三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)答案见解析(2)0(3)560【解析】(1)选择①,由,得,选择②,由,得;(2)利用赋值法可求解;(3)分两个部分求解后再求和即可.【小问1详解】选择①,因为,解得,所以展开式中二项式系数最大的项为选择②,因为,解得,所以展开式中二项式系数最大的项为【小问2详解】令,则,令,则,所以,【小问3详解】因为所以的展开式中含的项为:所以展开式中的系数为560.18、(1)(2)(3)y=【解析】(1)由导数的运算法则求解即可;(2)利用导函数计算即可;(3)由导数的几何意义得出切线方程.【小问1详解】【小问2详解】【小问3详解】当时,f(x)=0,则切点为所以切线方程是,即y=19、(1)(2)【解析】(1)先求出甲运动员打中10环的概率,从而可求出甲运动员在决赛中前2发子弹共打出1次10环的概率;(2)由于甲比乙落后2环,所以甲要获胜,则乙6环,甲9环或10环,或者乙7环,甲10环,再利用独立事件和互斥事件的概率公式求解即可【小问1详解】由表中的数据可得甲运动员打中10环的概率为,所以甲运动员在决赛中前2发子弹共打出1次10环的概率为【小问2详解】因为甲比乙落后2环,所以甲要获胜,则乙打中6环,甲打中9环或10环,或者乙打中7环,甲打中10环,因为由题意可得乙打中6环的概率和打中7环的概率均为,甲打中9环的概率为,打中10环的概率为,且甲乙两人射击互不影响所以最终甲能战胜乙的概率为20、(1)证明见解析(2)【解析】(1)由结合等差数列的定义证明即可;(2)由结合错位相减法得出前项和.【小问1详解】在两边同时除以,得:,,故数列是以1为首项,1为公差的等差数列;【小问2详解】由(1)得:,,①②①②得:所以.21、(1);(2).【解析】(1)设圆C的一般式方程为:,然后根据题意列出方程,解出D,E,F的值即可得到圆的方程;(2)先求出点关于直线l的对称点,设反射光线所在直线方程为,利用直线和圆的位置关系列出不等式解出k的取值范围即可.【详解】(1)设圆C的一般式方程为:,令,得,所以,令,得,所以,所以有,所以,①又圆C过点,,所以有,②,③由①②③得,,,所以圆C的一般式方程为,标准方程为;(2)设关于的对称点,所以有,解之得,故点,∴反射光线所在直线过点,设反射光线所在直线方程为:,所以有,所以反射光线所在的直线斜率取值范围为.【点睛】本题考查圆的方程的求法,直线和
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025届贵州省遵义市高中名校高考化学押题试卷含解析
- 快速康复下的麻醉管理
- 2025年市政园林养护装备项目合作计划书
- 辽宁省抚顺市重点中学2025届高考化学三模试卷含解析
- 中考数学高频考点专项练习:专题14 考点31 菱形 (2)及答案
- 山东省昌乐县第一中学2025届高三一诊考试化学试卷含解析
- 子宫破裂的治疗及护理
- 安全生产管理课件
- 2025届安徽省泗县双语中学高三3月份第一次模拟考试化学试卷含解析
- 2025届陕西省汉中市部分学校高三第二次联考化学试卷含解析
- 建筑智能化系统考核试卷
- 医院门诊部固定资产管理
- 2025年太仓市文化旅游发展集团限公司及子公司公开招聘12名高频重点提升(共500题)附带答案详解
- 急性心房颤动中国急诊管理指南(2024)解读
- 小学二年级有余数的除法口算题(共300题)
- 区域医学检测中心的建设与管理V3
- 林下中药材种植项目可行性研究报告
- 2025年中国岩棉行业发展现状、市场前景、投资方向分析报告(智研咨询发布)
- 经销商管理制度(15篇)
- 高温熔融金属企业安全知识培训
- 技能竞赛(电工电气设备赛项)备考试题库(含答案)
评论
0/150
提交评论